www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - lin. approximation
lin. approximation < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lin. approximation: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:33 Do 26.03.2009
Autor: AriR

hey leute

wenn man eine fkt f lin in [mm] x_o [/mm] approximiert durch [mm] f(x)=f(x_0)+f'(x_0)*(x-x_0)+g(x) [/mm]

wobei g der fehlerterm sein soll, dann heißt es ja, dass g schneller als lin gegen 0 gehen muss.

stellt man [mm] f(x)=f(x_0)+f'(x_0)*(x-x_0)+g(x) [/mm] um so erhält man

[mm] g(x)=f(x)-f(x_0)-f'(x_0)*(x-x_0) [/mm] und man sieht dass g(x) in der größenordnug von f liegt falls die größenordnung [mm] f\ge1, [/mm] da [mm] f(x_0) [/mm] sowie [mm] f'(x_0) [/mm] konstanten sind und [mm] (x-x_0) [/mm] die größenordnung 1 hat und somit kleiner als die von f ist (da sie kleiner ist wirkt sich das nicht auf das grobe verhalten von f aus)


was passiert aber, wenn man zB die wurzelfunktion [mm] f(x)=x^\bruch1{2} [/mm] lin approximieren möchte. die größenordnung des fehlerterms müsste doch nach obiger rechnung lin sein (f hat die größenordnung [mm] \bruch1{2} [/mm] und es wird ein lin term abgezogen, also ist das ganze wieder linear) und somit würde der fehler auch lin gegen 0 gehen und NICHT schneller als linear wie eigentlich gefordert.


kann mir da vllt einer von euch weiterhelfen

gruß ;)

        
Bezug
lin. approximation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:04 Do 09.04.2009
Autor: felixf

Hallo Ari

> wenn man eine fkt f lin in [mm]x_o[/mm] approximiert durch
> [mm]f(x)=f(x_0)+f'(x_0)*(x-x_0)+g(x)[/mm]
>  
> wobei g der fehlerterm sein soll, dann heißt es ja, dass g
> schneller als lin gegen 0 gehen muss.
>  
> stellt man [mm]f(x)=f(x_0)+f'(x_0)*(x-x_0)+g(x)[/mm] um so erhält
> man
>  
> [mm]g(x)=f(x)-f(x_0)-f'(x_0)*(x-x_0)[/mm]

Ja.

> und man sieht dass g(x) in
> der größenordnug von f liegt falls die größenordnung [mm]f\ge1,[/mm]
> da [mm]f(x_0)[/mm] sowie [mm]f'(x_0)[/mm] konstanten sind und [mm](x-x_0)[/mm] die
> größenordnung 1 hat und somit kleiner als die von f ist (da
> sie kleiner ist wirkt sich das nicht auf das grobe
> verhalten von f aus)

Was genau verstehst du hier unter der Groessenordnung?

> was passiert aber, wenn man zB die wurzelfunktion
> [mm]f(x)=x^\bruch1{2}[/mm] lin approximieren möchte. die
> größenordnung des fehlerterms müsste doch nach obiger
> rechnung lin sein (f hat die größenordnung [mm]\bruch1{2}[/mm] und
> es wird ein lin term abgezogen, also ist das ganze wieder
> linear) und somit würde der fehler auch lin gegen 0 gehen
> und NICHT schneller als linear wie eigentlich gefordert.

Lass dir mal von einem Programm $f(x)$, [mm] $f(x_0) [/mm] + (x - [mm] x_0) f'(x_0)$ [/mm] und $g(x)$ fuer verschiedene Wahlen von [mm] $x_0$ [/mm] zeichnen und guck dir an was passiert.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]