www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - lin. Ähnlichk. als Verkettung
lin. Ähnlichk. als Verkettung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lin. Ähnlichk. als Verkettung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Mo 07.12.2015
Autor: Raspery21

Aufgabe
Da wir den Beweis zu folgenden Satz in der Vorlesung ausgelassen haben, wollte ich mich mal selber dran versuchen:

Zu jeder linearen Ähnlichkeit [mm] $\rho$ [/mm] mit Ähnlichkeitsfaktor [mm] $\mu$ [/mm] existiert ein [mm] $\omega\inO(v)$ [/mm] und eine lineare Abbildung [mm] $h_\mu$ [/mm] mit [mm] $h_\mu(v)=\mu\cdot [/mm] v$ für alle [mm] $v\in [/mm] V$, so dass [mm] $\rho=h_{\mu}\circ\omega$ [/mm] ist.

$O(V)$ ist die Gruppe der orthogonalen Abbildungen [mm] $\omega:V\to [/mm] V'$ mit der Eigenschaft [mm] $||\omega(v)||=1 \cdot [/mm] ||v||$ für alle [mm] $v\in [/mm] V$. Also nichts anderes als eine lineare Ähnlichkeit mit Ähnlichkeitsfaktor [mm] $\mu=1$. [/mm]


Sei [mm] $\rho:V\to [/mm] V'$ eine lineare Ähnlichkeit

[mm] $\Rightarrow ||\rho(v)||=\mu\cdot||v||\,\,\forall v\in [/mm] V$

Sei [mm] $\omega\in [/mm] O(V)$ und [mm] $h_\mu$ [/mm] eine lineare Abbildung mit [mm] $h_\mu(v)=\mu\cdot [/mm] v$,

dann gilt:

[mm] $h_{\mu}\circ \omega(v) [/mm] = [mm] h_\mu (\omega(v)) [/mm] = [mm] h_\mu [/mm] (||v||) = [mm] \mu\cdot [/mm] ||v|| = [mm] ||\rho(v)||$. [/mm]


Edit: Moment ich sehe grade, dass es ja garnicht das ist was ich beweisen wollte.


        
Bezug
lin. Ähnlichk. als Verkettung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:30 Di 08.12.2015
Autor: fred97


> Da wir den Beweis zu folgenden Satz in der Vorlesung
> ausgelassen haben, wollte ich mich mal selber dran
> versuchen:
>
> Zu jeder linearen Ähnlichkeit [mm]\rho[/mm] mit Ähnlichkeitsfaktor
> [mm]\mu[/mm] existiert ein [mm]\omega\inO(v)[/mm] und eine lineare Abbildung
> [mm]h_\mu[/mm] mit [mm]h_\mu(v)=\mu\cdot v[/mm] für alle [mm]v\in V[/mm], so dass
> [mm]\rho=h_{\mu}\circ\omega[/mm] ist.
>  
> [mm]O(V)[/mm] ist die Gruppe der orthogonalen Abbildungen
> [mm]\omega:V\to V'[/mm] mit der Eigenschaft [mm]||\omega(v)||=1 \cdot ||v||[/mm]
> für alle [mm]v\in V[/mm]. Also nichts anderes als eine lineare
> Ähnlichkeit mit Ähnlichkeitsfaktor [mm]\mu=1[/mm].
>  
> Sei [mm]\rho:V\to V'[/mm] eine lineare Ähnlichkeit
>  
> [mm]\Rightarrow ||\rho(v)||=\mu\cdot||v||\,\,\forall v\in V[/mm]
>  
> Sei [mm]\omega\in O(V)[/mm] und [mm]h_\mu[/mm] eine lineare Abbildung mit
> [mm]h_\mu(v)=\mu\cdot v[/mm],
>  
> dann gilt:
>  
> [mm]h_{\mu}\circ \omega(v) = h_\mu (\omega(v)) = h_\mu (||v||) = \mu\cdot ||v|| = ||\rho(v)||[/mm].
>  
>
> Edit: Moment ich sehe grade, dass es ja garnicht das ist
> was ich beweisen wollte.
>  


Ich versuche mal, meine hellseherischen Fähigkeiten ins Spiel zu bringen:

1. ich vermute, V und V' sind Vektorräume mit Skalarprodukt und ||*|| sind jeweils die von den Skalarprodukten induzierten Normen.

2. gegeben ist eine lineare Abbildung $ [mm] \rho:V\to [/mm] V'$ mit


     $  [mm] ||\rho(v)||=\mu\cdot||v||\,\,\forall v\in [/mm] V $.

3. zeigen sollst Du: es ex. ein [mm] $\omega \in [/mm] O(V)$ mit

(*)  [mm] $\rho=\mu* \omega$. [/mm]

( (*) ist nichts anderes als die bekloppte Schreibweise $ [mm] \rho=h_{\mu}\circ\omega [/mm] $, denn [mm] h_{\mu} [/mm] ist nichts anderes als [mm] \mu*id_V, [/mm]  derjenige, der das so geschrieben hat, gehört gesteinigt ....).



Setzt man [mm] $f:=\bruch{1}{\mu}*\rho$, [/mm] so ist $f$ eine lineare Isometrie, also

    [mm] $f\in [/mm] O(V)$,

und fertig ist der Schuh.

FRED

Bezug
                
Bezug
lin. Ähnlichk. als Verkettung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 Di 08.12.2015
Autor: Raspery21


> > Da wir den Beweis zu folgenden Satz in der Vorlesung
> > ausgelassen haben, wollte ich mich mal selber dran
> > versuchen:
> >
> > Zu jeder linearen Ähnlichkeit [mm]\rho[/mm] mit Ähnlichkeitsfaktor
> > [mm]\mu[/mm] existiert ein [mm]\omega\inO(v)[/mm] und eine lineare Abbildung
> > [mm]h_\mu[/mm] mit [mm]h_\mu(v)=\mu\cdot v[/mm] für alle [mm]v\in V[/mm], so dass
> > [mm]\rho=h_{\mu}\circ\omega[/mm] ist.
>  >  
> > [mm]O(V)[/mm] ist die Gruppe der orthogonalen Abbildungen
> > [mm]\omega:V\to V'[/mm] mit der Eigenschaft [mm]||\omega(v)||=1 \cdot ||v||[/mm]
> > für alle [mm]v\in V[/mm]. Also nichts anderes als eine lineare
> > Ähnlichkeit mit Ähnlichkeitsfaktor [mm]\mu=1[/mm].
>  >  
> > Sei [mm]\rho:V\to V'[/mm] eine lineare Ähnlichkeit
>  >  
> > [mm]\Rightarrow ||\rho(v)||=\mu\cdot||v||\,\,\forall v\in V[/mm]
>  
> >  

> > Sei [mm]\omega\in O(V)[/mm] und [mm]h_\mu[/mm] eine lineare Abbildung mit
> > [mm]h_\mu(v)=\mu\cdot v[/mm],
>  >  
> > dann gilt:
>  >  
> > [mm]h_{\mu}\circ \omega(v) = h_\mu (\omega(v)) = h_\mu (||v||) = \mu\cdot ||v|| = ||\rho(v)||[/mm].
>  
> >  

> >
> > Edit: Moment ich sehe grade, dass es ja garnicht das ist
> > was ich beweisen wollte.
>  >  
>
>
> Ich versuche mal, meine hellseherischen Fähigkeiten ins
> Spiel zu bringen:
>  
> 1. ich vermute, V und V' sind Vektorräume mit
> Skalarprodukt und ||*|| sind jeweils die von den
> Skalarprodukten induzierten Normen.
>  
> 2. gegeben ist eine lineare Abbildung [mm]\rho:V\to V'[/mm] mit
>  
>
> [mm]||\rho(v)||=\mu\cdot||v||\,\,\forall v\in V [/mm].
>  
> 3. zeigen sollst Du: es ex. ein [mm]\omega \in O(V)[/mm] mit
>  
> (*)  [mm]\rho=\mu* \omega[/mm].
>  
> ( (*) ist nichts anderes als die bekloppte Schreibweise
> [mm]\rho=h_{\mu}\circ\omega [/mm], denn [mm]h_{\mu}[/mm] ist nichts anderes
> als [mm]\mu*id_V,[/mm]  derjenige, der das so geschrieben hat,
> gehört gesteinigt ....).

Mh ja das stimmt natürlich, aber steinigen will ich meinen Dozenten lieber nicht.... :D

>
>
> Setzt man [mm]f:=\bruch{1}{\mu}*\rho[/mm], so ist [mm]f[/mm] eine lineare
> Isometrie, also
>  
> [mm]f\in O(V)[/mm],
>  
> und fertig ist der Schuh.
>  
> FRED

Hi vielen dank Fred, ja genauso war das gemeint.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]