www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - lim a+b \leq limsup a+liminf b
lim a+b \leq limsup a+liminf b < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lim a+b \leq limsup a+liminf b: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:31 Do 12.01.2006
Autor: Master_X

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich habe einen Beweis, in dem der folgende Schritt verwendet wird:

Wenn der Grenzwert der Folge [mm] a_{n}+b_{n} [/mm] existiert gilt:
[mm] \limes_{n\rightarrow\infty}(a_{n}+b_{n} [/mm] ) [mm] \leq (\limes_{n\rightarrow\infty}sup a_{n})+ (\limes_{n\rightarrow\infty}inf b_{n}) [/mm] (soll limes superior und limes inferior heißen)

Nun versteh ich nicht, wie der limes inf da hinein kommt?
Eine Erklärung mit den Definitionen ist nicht nötig, es reicht für mich das Verständnis.

Danke

        
Bezug
lim a+b \leq limsup a+liminf b: Antwort
Status: (Antwort) fertig Status 
Datum: 07:31 Fr 13.01.2006
Autor: mathiash

Hallo und guten Morgen,

wenn beide Folgen konvergieren, ist es klar, oder ? Dann sind jeweils Limes, Lim Sup und
Lim Inf identisch.

Allgemein: Ich denke, wir koennen uns auf die Betrachtung des Falls
[mm] \lim_{n\to\infty}(a_n+b_n)=0 [/mm] beschraenken, sonst verschiebt sich halt noch alles um den Grenzwert L.

Wenn Limes Superior von [mm] a_n [/mm] gleich [mm] \infty [/mm] ist, so muss Limes Inferior von [mm] b_n [/mm] = [mm] -\infty [/mm] sein,
und fuer diesen Fall sollte die Aussage dann einfach keinen Sinn machen, da die rechte Seite der Ungl. nicht ordentlich definiert ist.

Andernfalls ist Lim Sup von [mm] a_n [/mm] eine Zahl A, und dann muss doch lim Inf von [mm] b_n [/mm] gleich
-A sein (bzw L-A im allgemeinen Fall).

Hoffe, es stimmt.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]