www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - langsamster Kreisel
langsamster Kreisel < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

langsamster Kreisel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 So 20.01.2019
Autor: nosche

Aufgabe
wann kippt ein Kreisel nicht mehr?

[Dateianhang nicht öffentlich]
Dreht sich ein Kreisel  der Masse m, dem Trägheitsmoment [mm] \Theta [/mm] und der Winkelgeschwindigkeit [mm] \omega [/mm] im Schwerefeld der Erde führt das zu einer Päzessionsbewegung mit der Winkelgschwindigkeit [mm] \omega_{p} [/mm]
Bei [mm] \omega [/mm] = [mm] 0s^{-1} [/mm] kippt der Kreisel um.
Läßt sich näherungsweise ein minimales [mm] \omega [/mm] angeben, ab dem der Kreisel nicht mehr umkippt?
Ich finde kein passendes Drehmoment, das das Umkippen des Kreisels verhindert



Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
langsamster Kreisel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 So 20.01.2019
Autor: HJKweseleit

Theoretisch muss ein Kreisel überhaupt nicht umkippen. Wenn du z.B. ein hart gekochtes Ei flach liegend schnell drehst, richtet es sich sogar auf und dreht sich auf der Spitze weiter.

Der aufrechte Kreisel hat einen bestimmten Drehimpuls. Wenn er zum Schluss bewegungslos da liegt, muss die Erde diesen übernommen haben (Drehimpulserhaltung). Wie macht sie das?

Das geht natürlich nur über die Reibung; wäre sie nicht da, würde der Kreisel ewig kreiseln. Erklären kann man den Vorgang schön mit Corioliskräften:

Würdest du den rotierenden Kreisel oben an der Achse an einem Kugellager leicht gekippt festhalten und dann loslassen, so würde er tatsächlich etwas umkippen. Diese Bewegung sorgt aber über Corioliskräfte für die Präzessionsbewegung, und diese ihrerseits über Corioliskräfte, dass ein aufrichtendes Moment entsteht. So lange letzteres nicht stark genug ist, kippt der Kreisel weiter, beschleunigt die Präzession, bis diese das Kippen kompensiert.

Wenn nun auf Grund der Reibung die Rotationsgeschwindigkeit abnimmt, sinkt die Corioliskraft. Der Kreisel kippt wieder ein Stück, die dabei entstehenden Corioliskräfte beschleunigen die Präzessionsbewegung wieder, und die für die Carioliskraft fehlende Rotationsgeschwindigkeit wird durch die Präzessionsgeschwindigkeit ausgeglichen bzw. verstärkt, da der weiter geneigte Kreisel eine stärkere Corioliskraft als zuvor benötigt, um nicht umzukippen. Je langsamer der Kreisel rotiert, desto schneller präzediert er, bis er dann aufsetzt und durch die Bodenberührung ganz abgebremst wird.

Für den Kreisel muss das Produkt [mm] \omega [/mm] * [mm] \omega_p [/mm] konstant sein.

Bezug
                
Bezug
langsamster Kreisel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 Mo 21.01.2019
Autor: nosche

vielen Dank für die recht ausführliche Rückmeldung.
Ich kenne den Kreisel über den Drehimpuls [mm] \vec{L} [/mm] und das Drehmoment [mm] \vec{M}=\vec{r}\times m\vec{g}=\bruch{d \vec{L}}{dt}, [/mm] wie im Giancoli abgehandelt. Der Ansatz mit Corioliskräften ist mir neu, muß ich mal nachforschen, vielleicht gibts da eine Kraft, ein Moment wonach ich suche.
Es bleibt erst mal die Frage: wann "siegt" die Präzession über das Umkippen [mm] \omega >10s^{-1}, \omega >100s^{-1}, \omega >1000s^{-1},... [/mm] bei einem [mm] Kreisel(m,\Theta)? [/mm]

Bezug
                        
Bezug
langsamster Kreisel: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Di 22.01.2019
Autor: leduart

Hallo
der Kreisel hat ja eine Ausdehnung, dass er umso stärker kippt, je kleiner sein [mm] \omega [/mm] ist, ist klar. Irgendwann berührt dann der kreisend äußere Rand die Unterlage und das kreiseln hört auf. Eigentlich geht es deshalb um die äußere Form des Kreisels, und den dazugehörigen Winkel. Ich hoffe, ich hab deine Frage so richtig interpretiert.
Gruß leduart

Bezug
                                
Bezug
langsamster Kreisel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 Sa 26.01.2019
Autor: nosche

an die Geometrie des Kreisels hab ich noch gar nicht gedacht, ist aber einleuchtend, dass es deshalb einen größten Öffnungswinkel für den den Präzessionskegel gib. Die Drehimpulsänderung müßte verhindern, dass dieser Winkel erreicht wird.



Bezug
                        
Bezug
langsamster Kreisel: Corioliskraft Beispiel
Status: (Antwort) fertig Status 
Datum: 23:25 Mi 23.01.2019
Autor: HJKweseleit

Im Anhang findest du ein allgemeines Rechenbeispiel für die Corioliskraft.

[a]1

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]