www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - l´hospital
l´hospital < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

l´hospital: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:35 Mo 10.01.2011
Autor: Balsam

Also bei folgender Aufgabe bin ich mir nicht sicher:

[mm] \limes_{x\rightarrow 0} [/mm]  ln(1-x)+sin(X) / (1-cos (x))

sowohl den oberen als auch den unteren term lass ich gegen 0 streben und bilde jeweils die erste Ableitung, so dann sieht das ganze bei mir so aus:

[mm] \limes_{x\rightarrow 0} [/mm]  ((x*cos (x)-cos(x)+1) / (x-1)) / sin (x)

= -1+1*(1/ x-1) / sin (x) = 0

Es müsste aber eigentlich -1 herauskommen :( .. ich weiß nich was ich falsch gemacht habe, kann das jemand korriegieren ??

editiert by Marcel: Sichtbarkeit von [mm] [nomm]$\to\0$[/nomm] [/mm] durch Abänderung zu [mm] [nomm]$\to [/mm] 0$[/nomm] erreicht! (Entfernen des Backslashs vor der 0!)

        
Bezug
l´hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 11:49 Mo 10.01.2011
Autor: schachuzipus

Hallo Balsam,




> Also bei folgender Aufgabe bin ich mir nicht sicher:
>  
> [mm]\limes_{x\rightarrow\0}[/mm]  ln(1-x)+sin(X) / (1-cos (x))

Lasse den Backslash vor der Null weg und lasse ein Leerzeichen, außerdem setze Klammern, wenn nötig, in Mitteleuropa gilt immer noch Punkt vor Strichrechnung.

Bei dir steht [mm]\lim\limits_{x\to 0}\ln(1-x)+\frac{\sin(x)}{1-\cos(x)}[/mm]

Du meinst aber [mm]\lim\limits_{x\to 0}\frac{\ln(1-x)+\sin(x)}{1-\cos(x)}[/mm]

Klicke auf die Formeln, dann siehst du den code ...

>  
> sowohl den oberen als auch den unteren term lass ich gegen
> 0 streben und bilde jeweils die erste Ableitung, so dann
> sieht das ganze bei mir so aus:
>  
> [mm]\limes_{x\rightarrow\0}[/mm]  ((x*cos (x)-cos(x)+1) / (x-1)) / sin (x) [ok]
>  
> = -1+1*(1/ x-1) / sin (x) = 0

Das geht doch gegen [mm]\frac{0}{0}[/mm]

Es ist doch [mm]\frac{\frac{x\cos(x)-\cos(x)+1}{x-1}}{\sin(x)}=\frac{x\cos(x)-\cos(x)+1}{(x-1)\sin(x)}[/mm]

Also kannst du ein zweites Mal de l'Hôpital anwenden

Ich würde aber die Ableitung des Zählers nach der ersten Anwendung von de l'Hôpital nicht zusammenfassen, das erschwert nur das weitere Ableiten.

Es ist [mm]\frac{\left[\ln(1-x)+\sin(x)\right]'}{[1-\cos(x)]'}=\frac{\red{\frac{1}{x-1}+\cos(x)}}{\blue{\sin(x)}}[/mm]

Und das strebt für [mm]x\to 0[/mm] gegen [mm]\frac{0}{0}[/mm], also erneut mit de l'Hôpital ran.

In dieser Version lässt es sich (wie ich finde) bequemer ableiten, und du kommst mit der 2ten de l'Hôpital-Kur auch auf den gewünschten GW -1

>  
> Es müsste aber eigentlich -1 herauskommen :( .. ich weiß
> nich was ich falsch gemacht habe, kann das jemand
> korriegieren ??  

Gruß

schachuzipus


Bezug
                
Bezug
l´hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:02 Mo 10.01.2011
Autor: Balsam

Wie kommst du auf diese Terme?
Ist das die 2. Ableitung?
$ [mm] \frac{\left[\ln(1-x)+\sin(x)\right]'}{[1-\cos(x)]'}=\frac{\red{\frac{1}{x-1}+\cos(x)}}{\blue{\sin(x)}} [/mm] $

Bezug
                        
Bezug
l´hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Mo 10.01.2011
Autor: schachuzipus

Hallo nochmal,


> Wie kommst du auf diese Terme?
>  Ist das die 2. Ableitung?
>  
> [mm]\frac{\left[\ln(1-x)+\sin(x)\right]'}{[1-\cos(x)]'}=\frac{\red{\frac{1}{x-1}+\cos(x)}}{\blue{\sin(x)}}[/mm]

Ich leite Zähler und Nenner getrennt ab:

Den Zähler nach Summenregel, wobei [mm]\ln(1-x)[/mm] nach Kettenregel abgeleitet wird

Also [mm]\text{Zähler}'=\left[\ln(1-x)\right]'+[\sin(x)]'=\frac{1}{1-x}\cdot{}(-1)+\cos(x)=\frac{1}{x-1}+\cos(x)[/mm]

Die Ableitung des Nenners ist ja selbstredend ...

Gruß

schachuzipus


Bezug
                                
Bezug
l´hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 Mo 10.01.2011
Autor: Balsam

lautet dann die 2.ableitung :

f(x)= 1+cos(x) -> 0 / (x-1)*sin(x) -> 0
f(x)´= -sin(x) / sin(x)+x*coa(x)- cos(x)


Bezug
                                        
Bezug
l´hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Mo 10.01.2011
Autor: fred97


> lautet dann die 2.ableitung :
>  
> f(x)= 1+cos(x) -> 0 / (x-1)*sin(x) -> 0
>  f(x)´= -sin(x) / sin(x)+x*coa(x)- cos(x)


Kannst Du das mal ordentlich aufschreiben ?

Ich sehe keine 2. Ableitung . Ich sehe nur komische  "->", merkwürdige Brüche , fehlende Klammern ...

FRED

>  


Bezug
                                                
Bezug
l´hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:39 Mo 10.01.2011
Autor: Balsam

[mm] \bruch{-sin(x)}{sin(x)+x*cos(x)- cos(x)} [/mm]

das ist die Ableitung

so besser ?

Bezug
                                                        
Bezug
l´hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Mo 10.01.2011
Autor: schachuzipus

Hallo nochmal,


> [mm]\bruch{-sin(x)}{sin(x)+x*cos(x)- cos(x)}[/mm]
>  
> das ist die Ableitung
>  
> so besser ?

Nein, noch viel schlimmer!!

Der obige letzte Ausdruck aus der 1. Anwendung von de l'Hôpital strebt wieder gegen [mm] $\frac{0}{0}$ [/mm]

Leite dort also Zähler und Nenner wieder getrennt ab.

Und schmeiße bitte nicht irgendeinen "Ergebnisterm" hin, sondern rechne vor.

Das sind doch ganz elementare Ableitungen ...

Gruß

schachuzipus


Bezug
                                                                
Bezug
l´hospital: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:52 Mo 10.01.2011
Autor: Balsam

ich "schmeiße" nichts hin...

Ich schreibe es so auf wie ich es selbst auf dem Zettel gerechnet habe.
Finde mein Fehler nicht, wo habe ich es denn falsch abgeleitet?

Bezug
                                                                        
Bezug
l´hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Mo 10.01.2011
Autor: Marcel

Hallo Balsam,

> ich "schmeiße" nichts hin...

so "böse" meine Schachuzipus das auch nicht.

> Ich schreibe es so auf wie ich es selbst auf dem Zettel
> gerechnet habe.

Das glaube ich nicht. Es fehlen einfach die Rechenschritte, und Schachuzipus wollte Dich darauf hinweisen, dass Du diese - in unserem und in Deinem Sinne - ergänzen solltest, damit man Deine Überlegungen auch vernünftig korrigieren kann.

> Finde mein Fehler nicht, wo habe ich es denn falsch
> abgeleitet?

S.o.: Füge bitte deine Überlegungen inklusive Rechenweg hinzu. Dann sehen wir auch, wo es Probleme/Unklarheiten bei Dir gibt.

Gruß,
Marcel

Bezug
                                                                                
Bezug
l´hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 Mo 10.01.2011
Autor: Balsam

Also zu meinen Schritten:

$ [mm] \frac{\left[\ln(1-x)+\sin(x)\right]'}{[1-\cos(x)]'}=\frac{\red{\frac{1}{x-1}+\cos(x)}}{\blue{\sin(x)}} [/mm] $

so und dafür kann man ja auch schreiben:

1+ cos (x) / (x-1)*sin(x)

und wenn man da wieder jeweils die Ableitung vom Zähler und Nenner macht folgt:


-sin(x) /  (x-1)*cos(x)+ 1*sin(x)

wenn das wieder falsch ist.. dann weiß ich auch nicht .. :/

Bezug
                                                                                        
Bezug
l´hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Mo 10.01.2011
Autor: MathePower

Hallo Balsam,

> Also zu meinen Schritten:
>  
> [mm]\frac{\left[\ln(1-x)+\sin(x)\right]'}{[1-\cos(x)]'}=\frac{\red{\frac{1}{x-1}+\cos(x)}}{\blue{\sin(x)}}[/mm]
>
> so und dafür kann man ja auch schreiben:
>  
> 1+ cos (x) / (x-1)*sin(x)


Hier muss es doch lauten:

[mm]\bruch{1+\red{\left(x-1\right)}*\cos\left(x\right)}{\left(x-1\right)*\sin\left(x\right)}[/mm]


>  
> und wenn man da wieder jeweils die Ableitung vom Zähler
> und Nenner macht folgt:
>  
>
> -sin(x) /  (x-1)*cos(x)+ 1*sin(x)
>  
> wenn das wieder falsch ist.. dann weiß ich auch nicht ..
> :/


Gruss
MathePower

Bezug
                                                                                                
Bezug
l´hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Mo 10.01.2011
Autor: Balsam

[mm] \frac{\red{\frac{1}{x-1}+\cos(x)}}{\blue{\sin(x)}} [/mm] $ also ist diese erste ableitung falsch ? -.-

Bezug
                                                                                                        
Bezug
l´hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Mo 10.01.2011
Autor: Steffi21

Hallo, ein klares NEIN, ist korrekt, du hast für x gegen Null immer noch den unbestimmten Ausdruck [mm] \bruch{0}{0}, [/mm] also Regel L'Hospital erneut anwenden, was bedeutet, Zähler und Nenner GETRENNT ableiten:

(1)
Zähler: [mm] \bruch{1}{x-1}+cos(x)=(x-1)^{-1}+cos(x) [/mm]

Ableitung Zähler: [mm] -(x-1)^{-2}-sin(x) [/mm]

(2)
Nenner: sin(x)

Ableitung Nenner: cos(x)

jetzt sollte es aber klappen

[mm] \limes_{x\rightarrow0}\bruch{-\bruch{1}{(x-1)^{2}}-sin(x)}{cos(x)}=.... [/mm]

Steffi


Bezug
                                                                                                        
Bezug
l´hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Mo 10.01.2011
Autor: schachuzipus

Hallo nochmal,

> [mm]\frac{\red{\frac{1}{x-1}+\cos(x)}}{\blue{\sin(x)}}[/mm] $ also
> ist diese erste ableitung falsch ? -.-

Nein, aber ich sagte oben, ich würde nicht "vereinfachen", sondern alles so stehen lassen und dann Zähler und Nenner getrennt ableiten, Zähler=rot, Nenner=blau

Du hast durch das "Vereinfachen" die Sache verschlimmbessert, da falsch vereinfacht.

Du kannst das [mm]x-1[/mm] nicht einfach so in den Nenner ziehen.

Dazu müsstest du die beiden Terme im Zähler zunächst gleichnamig machen:

[mm]\frac{\frac{1}{x-1}+\cos(x)}{\sin(x)}=\frac{\frac{1}{x-1}+\frac{(x-1)\cdot{}\cos(x)}{x-1}}{\sin(x)}=\frac{\frac{1+(x-1)\cdot{}\cos(x)}{x-1}}{\sin(x)}=\frac{1+(x-1)\cdot{}\cos(x)}{(x-1)\cdot{}\sin(x)[/mm]

Das geht auch gegen [mm] $\frac{0}{0}$, [/mm] also de l'Hôpital.

Aber wie gesagt, ich persönlich finde, dass der obige bunte Ausdruck einfacher weiterzubehandeln ist.

Gruß

schachuzipus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]