www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - kurze Beweise
kurze Beweise < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurze Beweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 So 01.03.2009
Autor: ronja33

Aufgabe
Es seien w,z [mm] \in \IC. [/mm] Beweisen Sie:
a) Re(wz)=RewRez - ImwImz
b) Im(wz)=RewImz + RezImw
c) Re [mm] (\bruch{w}{z})= 1/|z|^2 [/mm] (RewRez + ImwImz), falls [mm] z\not=0 [/mm]
d) [mm] Im(\bruch{w}{z})= 1/|z|^2 [/mm] (ImwRez - RewImz), falls [mm] z\not=0 [/mm]

Hallo,

komm' bei den Beweisen leider nicht weiter.
zu a): ich verstehe nicht, warum hier überhaupt ein Imaginärteil vorhanden ist? Es geht doch um den Realteil, also ist der Imaginärteil doch 0 ?

Ich kenne folgende Regeln:
Re (z+w) = Re z + Re w
Im (z+w) = Im z + Im w
Re (az) = a Rez
Im (az) = a Imz

Doch wie ist das bei der Multiplikation und Division?

Vielen Dank im Voraus.

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
kurze Beweise: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 So 01.03.2009
Autor: XPatrickX

Hi,

schreibe hier $w:=a+bi$ und $z:=c+di$ und rechne die Aussage unter den gewöhnlichen Rechenregeln der reellen Zahlen nach.

Gruß Patrick

Bezug
                
Bezug
kurze Beweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:40 So 01.03.2009
Autor: ronja33

Ah, super. Vielen Dank. War ja gar nicht so schwer, wie gedacht :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]