www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - kurvendiskussion
kurvendiskussion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Mi 27.06.2007
Autor: mickeymouse

Aufgabe
gegeben ist die funktion [mm] f(x)=xe^{1-x} [/mm] ; x [mm] \in [/mm] Dmax
a) bestimme die maximale definitionsmenge Dmax, die nullstellen von f, die koordinaten und die art der extrema sowie die wendestellen des graphen!
b) zeige: F(x)= [mm] -e^{1-x}(1+x) [/mm] ist eine stammfunktion von f

zu a) Dmax müsste R sein, oder? die nullstelle ist bei x=0, hab ich aber nur durch überlegebn rausbekommen, wie geht das denn durch rechnung? kann ich des so umstellen, dass mans einfach ausrechnen kann?
und wie bekomm ich die erste ableitung von f?
zu b) die lösung hab ich schon rausbekommen durch differenzieren der stammfunktion


        
Bezug
kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Mi 27.06.2007
Autor: Kroni


> gegeben ist die funktion [mm]f(x)=xe^{1-x}[/mm] ; x [mm]\in[/mm] Dmax
>  a) bestimme die maximale definitionsmenge Dmax, die
> nullstellen von f, die koordinaten und die art der extrema
> sowie die wendestellen des graphen!
> b) zeige: F(x)= [mm]-e^{1-x}(1+x)[/mm] ist eine stammfunktion von f
>  zu a) Dmax müsste R sein, oder?

Ja, es gibt keine Def-Lücken. Du teilst dort ja nirgends durch Null oder ähnlich verbotene Sachen.

>die nullstelle ist bei  x=0, hab ich aber nur durch >überlegebn rausbekommen, wie

> geht das denn durch rechnung? kann ich des so umstellen,
> dass mans einfach ausrechnen kann?

Ja, durch folgende Überlegung:

[mm] $f(x)=xe^{1-x}$ [/mm] Es handelt sich ja hier um ein Produkt, welches Null werden soll.
Ein Produkt wird immer dann Null, wenn ein Faktor null wird, also:
$x=0 [mm] \vee e^{1-x}=0$ [/mm] Die e Funktion wird nie Null, x wird bei x=0 null *g*. Also klar, dass x=0 die einzige Nullstelle ist.

>  und wie bekomm ich die erste ableitung von f?

Indem du die Produktregeln anwendest:

[mm] $(u\cdot [/mm] v)'=u'v+v'u$

>  zu b) die lösung hab ich schon rausbekommen durch
> differenzieren der stammfunktion

Ja. Genauso macht man das auch, aber dann solltest du ja eg. die Produktregel kennen, die du dann oben einfach anweden kannst, um f'(x) zu berechnen.

LG

Kroni

>  


Bezug
                
Bezug
kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Mi 27.06.2007
Autor: mickeymouse

stimmt! jetzt wo dus sagst..:)
dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]