www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - kurvendiskussion
kurvendiskussion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurvendiskussion: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:13 Di 18.04.2006
Autor: azad63

Aufgabe
$f(x) = [mm] -1/2x^3 [/mm] + [mm] 2,5x^2 [/mm] - 4x+2$


Meine Frage ist, ich habe Gleichung der Wendetangente aber weiß nicht wie ich  Gleichung der Normalen zur Wendetangente durch den Wendepunkt und
Die Fläche die von der Funktion f(x) und der Wendenormalen       eingeschlossen wird berechnen??
Kann jemand mir dabei helfen

- Relative Extremwerte
- Wendepunkte
- Gleichung der Wendetangente
- Gleichung der Normalen zur Wendetangente durch den Wendepunkt
- Die Fläche die von der Funktion f(x) und der Wendenormalen       eingeschlossen wird

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
kurvendiskussion: Wendenormale
Status: (Antwort) fertig Status 
Datum: 22:34 Di 18.04.2006
Autor: Loddar

Hallo azad63,

[willkommenmr] !!


Die Wendenormale ist eine Gerade, die durch den Wendepunkt verläuft und senkrecht auf die Wendetangente steht.

Wenn Du die Wendetangente bereits ermittelt hast, kennst Du auch die entsprechende Steigung [mm] $m_t$ [/mm] der Tangente.

Damit zwei Geraden genau senkrecht aufeinander stehen, muss für ihre Steigungen [mm] $m_1$ [/mm] und [mm] $m_2$ [/mm] gelten:

[mm] [quote]$m_1*m_2 [/mm] \ = \ -1$[/quote]

Für die Wendenormale bzw. deren Steigung [mm] $m_n$ [/mm] heißt das: [mm] $m_n [/mm] \ = \ - [mm] \bruch{1}{m_t}$ [/mm] .

Nun diesen Wert [mm] $m_n$ [/mm] sowie die Punktkoordinaten [mm] $x_w$ [/mm] und [mm] $y_w$ [/mm] in die Punkt-Steigungs-Form von Geraden einsetzen:

[mm] [quote]$m_n [/mm] \ = \ [mm] \bruch{y-y_w}{x-x_w}$[/quote] [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]