www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - kurven eigenschaften
kurven eigenschaften < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurven eigenschaften: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Mo 08.05.2006
Autor: da_genie

Aufgabe
ermitteln sie das absoloute Maximum der Funktion
f(x)= -0,5*(x-1,8)*(x+2,35)

Ich habe jez ausgerechnet
f(x)= -0,5*(x-1,8)*(x+2,35)
=-0,5*(x²+2,35x-1,8x+0,55)
=-0.5*(x²+0,55x+0,55)
=-0,5x²-0,275x-0,275

so ist das richtig? Und 2. kann mir jemand bitte sagen wo das absolute maximum der funktion ist?

        
Bezug
kurven eigenschaften: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Mo 08.05.2006
Autor: Zwerglein

Hi, denis,

meine Antwort gilt nur unter der Voraussetzung, dass die Definitionsmenge D = [mm] \IR [/mm] ist.

> ermitteln sie das absolute Maximum der Funktion
>  f(x)= -0,5*(x-1,8)*(x+2,35)
>  Ich habe jez ausgerechnet
>  f(x)= -0,5*(x-1,8)*(x+2,35)
>  =-0,5*(x²+2,35x-1,8x+0,55)
>  =-0.5*(x²+0,55x+0,55)
>  =-0,5x²-0,275x-0,275
>  
> so ist das richtig? Und 2. kann mir jemand bitte sagen wo
> das absolute maximum der funktion ist?

Ich rechne das nicht nach (aber auf den ersten Blick erscheint mir die 0,55 in der Klammer falsch!).
Wie Du siehst, handelt es sich um eine nach unten geöffnete Parabel. Deren Scheitel ist der höchste Punkt.
Darum ist das absolute Maximum die y-Koordinate des Scheitels.
Dieses Maximum (also die y-Koordinate des Scheitels) kannst Du nun auf verschiedene Arten berechnen. Ich geb' Dir mal zwei verschiedene Lösungswege an:

(1) Mit Hilfe der Scheitelform.

(2) Deine Parabel hat die Nullstellen x=1,8 und x=-2,35.
Die x-Koordinate [mm] x_{s} [/mm] des Scheitels muss genau die Mitte dieser Nullstellen sein. Wenn Du diese "Mitte" ausrechnest und in f(x) einsetzt, kriegst Du das Maximum auch.

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]