www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - kurven
kurven < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurven: Frage
Status: (Frage) beantwortet Status 
Datum: 12:54 Sa 03.09.2005
Autor: sonic444

moin, wie stelle ich eine parallelkurve im abstand d=2 zu der kurve r(t)=(5cost,8sint) auf?

über den normalenvektor n(t)=2 vielleicht??? aber wie gehts dann weiter?

wenn mir jemand auf die sprünge helfen könnte wäre ich sehr dankbar!

habe die frage in keinem anderen forum gestellt

        
Bezug
kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Sa 03.09.2005
Autor: Leopold_Gast

Zunächst einmal ist mir nicht ganz klar, was du mit "Parallelkurve" meinst. Verstehe ich das richtig, daß jeder Punkt der gesuchten Kurve zum nächstgelegenen Punkt der gegebenen Kurve (einer Ellipse) konstanten Abstand [mm]c[/mm] haben soll? Falls ja, dann ist dein Ansatz mit dem Normalenvektor der richtige.

Zunächst einmal erhältst du durch Differentiation den Tangentialvektor zum Parameterwert [mm]t[/mm]:

[mm]\dot{r}(t)[/mm]

Mit steigendem [mm]t[/mm] umläuft er als Geschwindigkeitsvektor die Ellipse gegen den Uhrzeigersinn. Durch Vertauschen der Koordinaten und Änderung des Vorzeichens in der ersten Koordinate bekommst du einen Normalenvektor dazu:

[mm]\dot{r}(t)^{\bot}[/mm]

Er bildet mit dem Tangentialvektor ein Rechtssystem, zeigt also in das Innere der Ellipse. Somit zeigt der Gegenvektor

[mm]- \dot{r}(t)^{\bot}[/mm]

nach außen. Dieser ist jetzt zu normieren und mit dem Faktor [mm]c[/mm] zu strecken. Damit hast du als Parameterdarstellung [mm]s(t)[/mm] für deine gesuchte Kurve

[mm]s(t) = r(t) - \frac{c}{\left| \dot{r}(t) \right|} \, \dot{r}(t)^{\bot}[/mm]

Falls du die innen liegende "Parallelkurve" haben möchtest, ist das Minuszeichen der Formel durch ein Pluszeichen zu ersetzen.

Bezug
                
Bezug
kurven: rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:02 So 04.09.2005
Autor: sonic444

ja, die parallelkurve ist die kurve, die in jedem punkt den abstand c oder d zur ursprünglichen kurve hat.

n(t)= [mm] \bruch{(-\dot{y}(t),\dot{x}(t))}{ \wurzel{\dot{x}²(t)+\dot{y}²(t)}} [/mm]

das heißt ich kann die parallelkurve auch nach folgender formel berechnen oder?
s(t)=r(t)-d*n(t)

Bezug
                        
Bezug
kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 So 04.09.2005
Autor: Leopold_Gast

Zumindest in dem konkreten Fall der Ellipse scheint mir diese Formel richtig zu sein: Ja.

Ob das auch bei nicht so schönen Kurven, die sich wild und kreuz und quer durch die Ebene schlängeln, so ist, wäre noch zu untersuchen. Insbesondere Orientierungsfragen haben es manchmal in sich.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]