www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - kritische punkte
kritische punkte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kritische punkte: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:06 Sa 26.06.2010
Autor: rml_

Aufgabe
Es soll die Funktion f : [mm] R^2 [/mm] ->R; f (x; y) = [mm] (y-3x^2)(y-x^2) [/mm] untersucht werden.
(a) Bestimmen Sie alle kritischen Punkte von f .

hallo:),

gradient=0:

[mm] f_x(x,y)=x(12x^2 [/mm] + 8y)
[mm] f_y(x,y)=y=2x^2 [/mm]

y in [mm] f_x(x,y)-> x^3(12-16) [/mm] -> x=0 , y=0

kann es sein dass dies die einzigen nullstellen sind? wenn ja die sind dann 3-fach oder?= sattelpunkt?

danke

        
Bezug
kritische punkte: partielle Ableitungen falsch
Status: (Antwort) fertig Status 
Datum: 19:09 Sa 26.06.2010
Autor: Loddar

Hallo rml_!


Nein, das kann nicht stimmen. Ich habe auch andere partielle Ableitungen erhalten. Bitte rechne vor ...


Gruß
Loddar


Bezug
                
Bezug
kritische punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Sa 26.06.2010
Autor: rml_

ok

[mm] f(x,y)=(y-3x^2)(y-x^2) [/mm]
[mm] f_x(x,y)=-6x(y-x^2) [/mm] + [mm] (y-3x^2)(-2x) [/mm]
[mm] f_y(x,y)=1*(y-x^2) [/mm] + [mm] (y-3x^2)*1 [/mm]

zusammenfassen:
[mm] f_x(x,y)= -6xy+6x^3 [/mm] + [mm] (-2xy)(6x^3)= 12x^3 [/mm] - [mm] 8xy=x(12x^2 [/mm] - 8y)
[mm] f_y(x,y)= [/mm] y - [mm] x^2 [/mm] + y [mm] -3x^2= 2y-4x^2 [/mm] (nach y umstelle und in [mm] f_x [/mm] einsetzten)

wo ist der fehelr?

Bezug
                        
Bezug
kritische punkte: nun richtig
Status: (Antwort) fertig Status 
Datum: 19:22 Sa 26.06.2010
Autor: Loddar

Hallo!


Nun stimmen die partiellen Ableitungen. Vielleicht meintest Du auch vorhin dasselbe, hattest es aber sehr schlampig aufgeschrieben.


Gruß
Loddar


Bezug
                                
Bezug
kritische punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Sa 26.06.2010
Autor: rml_

ok danke, also ist (0,0) die einzige 3-fache nullstelle des gradienten?
denn wenn ich [mm] 2y-4x^2=0 ->y=2x^2 [/mm] in [mm] f_x [/mm] einsetzte dann:

[mm] x(12x^2-8(2x^2))= x(12x^2 -16x^2)=x^3(12-16) =x^3 [/mm] muss dann null sein wieder in [mm] y=2x^2 [/mm] einsetzten ->y =0

Bezug
                                        
Bezug
kritische punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Sa 26.06.2010
Autor: MathePower

Hallo rml_,

> ok danke, also ist (0,0) die einzige 3-fache nullstelle des
> gradienten?


So ist es.


>  denn wenn ich [mm]2y-4x^2=0 ->y=2x^2[/mm] in [mm]f_x[/mm] einsetzte dann:
>  
> [mm]x(12x^2-8(2x^2))= x(12x^2 -16x^2)=x^3(12-16) =x^3[/mm] muss dann
> null sein wieder in [mm]y=2x^2[/mm] einsetzten ->y =0


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]