www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Operations Research" - konvexes OP mit linearen Nb
konvexes OP mit linearen Nb < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvexes OP mit linearen Nb: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:40 Fr 08.05.2009
Autor: mathema

Aufgabe
Seien [mm]\ S= conv({{P1,P2,P3,P4}}) \subset \IR^2 ~mit ~P1=[-2,0],P2=[-2,6], P3=[4,3],P4=[\bruch{1}{2},\bruch{3}{2}] ~und~ P=[\bruch{1}{2},0] ~gegeben.~ Gesucht ~ist~ ein~ P^\*\inS ~mit~ minimalem~ (euklidischen)~ Abstand ~zu~ P. [/mm]

(a) Formulieren Sie das Problem als konvexes Optimierungsproblem mit linearen Nebenbedingungen.

(b) Stellen Sie das zugehörige KKT-System auf.

(c) Finden Sie eine Lösung für das System aus (b)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen.
Ich bin mir unsicher mit der Aufgabe und hoffe auf Hilfestellung. Habe bisher noch wenig Erfahrung mit Optimierungsproblemen.

zu (a): Ein konvexes Optimierungsproblem mit linearen Nebenbedingungen ist von der folgenden Form:

min f(x) s.d [mm]\ Ax \le b [/mm] .   Gesucht ist meines Erachtens der minimale Abstand von P zu [mm]\ P^\* [/mm] unter der Nebenbedingung, dass [mm]\ P^\* [/mm] in S liegt.
Als Zielfunktion habe ich mir folgendes überlegt:

[mm]\ min(f(x)) ~=~min \parallel P-P^\*\parallel ~= ~min\wurzel{(\bruch{1}{2}~-~X^\*)^2~+~(0-Y^\*)^2} [/mm]

Zu den Nebenbedingungen.
Ich habe mir die konvexe Hülle einmal aufgemalt und habe festgestellt, dass der Punkt P unterhalb der Menge S liegt. Daraus lässt sich folgern, dass der gesuchte Punkt [mm]\ P^\* [/mm] auf der Verbindungsstrecke von P1 und P4 liegen muss. Also auf der Geraden g(x)=1/2x +1 Meine Nebenbedingung habe ich dann formuliert als

1/2x + 1= y

Dies kann nicht stimmen. Allein schon weil ich zwei Gleichungen benötige (da ich zwei Unbekannte habe). Ein anderer Gedanke, den ich dann hatte ist der folgende: Ich habe die Gleichung der Gerade bestimmt die durch den Punkt P geht und senkrecht zu der Gerade g(x) verläuft.

also die Gleichung h(x)= -2x+1 .

Der gesuchte Punkt muss ja auf dem Schnitt der beiden Geraden liegen.
Die Nebenbedingung wäre dann.

-2x   +1 =y
1/2x +1 =y

Der Nachteil hierbei: Ich benötige garnicht mehr meine Zielfunktion f(x), da ich den Punkt allein mit den Nebenbedingungen ermitteln kann.

Ich komme hier irgendwie nicht weiter. Sind meine Überlegungen überhaupt richtig? Wäre über einen Denkanstoß sehr dankbar.
Leider kann ich ja ohne den (a)-Teil die anderen Aufgabenteile nicht lösen.

Dankeschön

Mathema





        
Bezug
konvexes OP mit linearen Nb: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 11.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]