www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - konvex ist kompl(iziert)ex
konvex ist kompl(iziert)ex < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvex ist kompl(iziert)ex: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:49 Di 29.05.2012
Autor: Marschal

Aufgabe
Schönen guten Abend alle zusammen. Die Aufgabe ist:

Sei $ [mm] I=[a,b]\neq \emptyset [/mm] $ und $ [mm] f:I\to \IR [/mm] $ eine inkonstante konvexe Funktion.

Behauptung: $ [mm] {\rm max} [/mm] \ f(x) $ wird nicht im Inneren von $ I $ angenommen.

Mit "im Inneren von $ I $" ist wohl die Menge aller inneren Punkte von $ I $ gemeint, also $ J:=(a,b) $

Ich komme aber trotzdem auf keinen grünen Zweig. Die Definition: $ f: [mm] \IR^n \supset [/mm] D [mm] \to \IR [/mm] $ ist konvex $ [mm] \iff \forall\ x,y\in [/mm] D $ gilt $ [mm] f\big((1-t)x+ty\big) \leq (1-t)f(x)+tf(y)\quad \forall t\in [/mm] [0,1] $ weiß ich hier gar nicht anzuwenden.

Könnt ihr mir helfen?

        
Bezug
konvex ist kompl(iziert)ex: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 Di 29.05.2012
Autor: kamaleonti

Guten Abend Marschal,
> Schönen guten Abend alle zusammen. Die Aufgabe ist:
>  
> Sei [mm]I=[a,b]\neq \emptyset[/mm] und [mm]f:I\to \IR[/mm] eine inkonstante konvexe Funktion.
>  
> Behauptung: [mm]{\rm max} \ f(x)[/mm] wird nicht im Inneren von [mm]I[/mm] angenommen.
>  Mit "im Inneren von [mm]I [/mm]" ist wohl die Menge aller inneren
> Punkte von [mm]I[/mm] gemeint, also [mm]J:=(a,b)[/mm]
>  
> Ich komme aber trotzdem auf keinen grünen Zweig. Die
> Definition: [mm]f: \IR^n \supset D \to \IR[/mm] ist konvex [mm]\iff \forall\ x,y\in D[/mm]
> gilt [mm]f\big((1-t)x+ty\big) \leq (1-t)f(x)+tf(y)\quad \forall t\in [0,1][/mm]
> weiß ich hier gar nicht anzuwenden.

Angenommen [mm] \xi\in(a,b) [/mm] ist Maximum. Dann gilt in einer Umgebung U, [mm] U\subset(a,b) [/mm] von [mm] \xi: [/mm]

       [mm] $f(\xi)\ge [/mm] f(x)$ für alle [mm] $x\in [/mm] U$.

Ohne Einschränkung [mm] U=(\xi-\varepsilon,\xi+\varepsilon) [/mm] mit einem [mm] \varepsilon>0. [/mm]

Verwende nun die Konvexität von f, um dies zum Widerspruch zu führen.


LG

>  
> Könnt ihr mir helfen?


Bezug
                
Bezug
konvex ist kompl(iziert)ex: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:53 Di 29.05.2012
Autor: Marschal

Ich wollte dir genau so schnell antworten wie du mir. Leider hat es etwas gedauert bis bei mir der Groschen gefallen ist.
Das war eine super Idee von dir!

Eine Frage noch dazu: In der Aufgabenstellung ist die Rede von "dem Maximum" (hab ich mit $ [mm] {\rm max} [/mm] \ f(x) $) abgekürzt). Kann ich das so interpretieren, dass es genau eine Maximumsstelle gibt? Das hier:

--------- ----
         .

wäre ja auch eine konvexe inkonstante Funkion, allerdings mit unendlichen vielen Maxima. Verstehst du was ich meine?

Bezug
                        
Bezug
konvex ist kompl(iziert)ex: Gegenbeispiel zur Behauptung?
Status: (Antwort) fertig Status 
Datum: 23:16 Di 29.05.2012
Autor: Helbig


> Eine Frage noch dazu: In der Aufgabenstellung ist die Rede
> von "dem Maximum" (hab ich mit [mm]{\rm max} \ f(x) [/mm])
> abgekürzt). Kann ich das so interpretieren, dass es genau
> eine Maximumsstelle gibt?

Nein. Sondern nur ein Maximum. Das aber an beliebig vielen Stellen angenommen werden kann.


>  
> --------- ----
>          .

>
> wäre ja auch eine konvexe inkonstante Funkion, allerdings
> mit unendlichen vielen Maxima. Verstehst du was ich meine?

Deine Funktion nimmt zwar das Maximum im Inneren an, sie ist aber nicht konvex. Dazu müßte ihr Graph unterhalb jeder Sekante liegen. Dies tut sie bei der folgenden Sekante aber nicht:

--------- ----
        \          
         .

Gruß,
Wolfgang

Bezug
                                
Bezug
konvex ist kompl(iziert)ex: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:33 Di 29.05.2012
Autor: Marschal

Alles klar, dankeschön Wolfgang! Super eure Antworten!

Das war leider nur der a)-Teil der Aufgabe. In der b) ist $ f $ zusätzlich noch stetig.

Behauptung: $ [mm] {\rm max} [/mm] \ f(x) $ wird auf einem $ [mm] x\in\{a,b\} [/mm] $ angenommen.

Ich finde das etwas komisch, wenn ich das für alle inkonstanten konvexen Funktionen schon gezeigt habe, dass es das Maximum nicht im Inneren $ J $ angenommen wird, dann insebsondere doch auch für alle inkonstanten konvexen und stetigen Funktionen, oder? Folgt daraus nicht automatisch, dass $ [mm] {\rm max} [/mm] \ f(x) $ in $ a [mm] \vee [/mm] b $ angenommen wird?

Bezug
                                        
Bezug
konvex ist kompl(iziert)ex: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Di 29.05.2012
Autor: Helbig

Wie heißt Teil b) genau?
Bezug
                                                
Bezug
konvex ist kompl(iziert)ex: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:51 Di 29.05.2012
Autor: Marschal

Ist "Wie heißt Teil b) genau?" deine aktueller Antwort oder die andere? Wenn ja:

b) Sei $ [mm] I=[a,b]\neq \emptyset [/mm] $ und $ [mm] f:I\to \IR [/mm] $ eine inkonstante konvexe und stetige Funktion.

Behauptung: $ f $ nimmt das Maximum in einem $ [mm] x\in\{a,b\} [/mm] $ an.

Bezug
                                                        
Bezug
konvex ist kompl(iziert)ex: Antwort
Status: (Antwort) fertig Status 
Datum: 00:16 Mi 30.05.2012
Autor: Helbig


>  
> b) Sei [mm]I=[a,b]\neq \emptyset[/mm] und [mm]f:I\to \IR[/mm] eine
> inkonstante konvexe und stetige Funktion.
>  
> Behauptung: [mm]f[/mm] nimmt das Maximum in einem [mm]x\in\{a,b\}[/mm] an.

In Teil a) sollten wir zeigen, daß $f$ sein Maximum nicht im Inneren annimmt, in Teil b),
daß $f$ sein Maximum am Rand annimmt. Und dazu brauchen wir die Stetigkeit. Denn sonst können wir nicht sagen, daß $f$ überhaupt ein Maximum hat.

Gruß,
Wolfgang


Bezug
                                                                
Bezug
konvex ist kompl(iziert)ex: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:35 Mi 30.05.2012
Autor: Marschal

Danke Wolfgang.

Achso, ich habe einfach die Aussage aus a), dass $ f $ ein Maximum haben soll, mit in die b) importiert.

Also: Da $ f $ stetig und inkonstant ist, gibt es $ [mm] x,y\in [/mm] I $ mit $ [mm] f(x)\neq [/mm] f(y) $. Hmm ich glaube ich stehe auf dem Schlauch. Wenn eine Funktion inkonstant ist, muss sie doch mindestens ein Maximum haben, oder? Wo spielt da die Stetigkeit mit herein?
Tut mir leid, wahrscheinlich wirke ich gerade total bescheuert.

Bezug
                                                                        
Bezug
konvex ist kompl(iziert)ex: stetig auf Kompaktum
Status: (Antwort) fertig Status 
Datum: 00:48 Mi 30.05.2012
Autor: Helbig


> Danke Wolfgang.
>  
> Achso, ich habe einfach die Aussage aus a), dass [mm]f[/mm] ein
> Maximum haben soll, mit in die b) importiert.

In a) wird nicht vorausgesetzt, daß $f$ überhaupt ein Maximum hat. Deswegen kann man die Existenz eines Maximums auch nicht nach b) "importieren".

>
> Also: Da [mm]f[/mm] stetig und inkonstant ist, gibt es [mm]x,y\in I[/mm] mit
> [mm]f(x)\neq f(y) [/mm]. Hmm ich glaube ich stehe auf dem Schlauch.
> Wenn eine Funktion inkonstant ist, muss sie doch mindestens
> ein Maximum haben, oder? Wo spielt da die Stetigkeit mit
> herein?

z. B. $f(x) = x$ für [mm] $x\in[0,1)$ [/mm] und $f(1)=0$. Dieses $f$ hat kein Maximum auf $[0,1]$.

Nun gibt es den Satz, daß eine stetige Funktion auf einem Kompaktum ein Maximum hat, und $[a,b]$ ist kompakt. Nach a) gibt es keine Maximumstelle in $(a,b)$. Also muß einer der beiden Punkte [mm] $a,\; [/mm] b$ eine Maximumstelle sein.

Übrigens, beachte meine Mitteilung zur Beweisskizze von kamaleonti!

Grüße,
Wolfgang


Bezug
                
Bezug
konvex ist kompl(iziert)ex: kein Widerspruch
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:00 Mi 30.05.2012
Autor: Helbig

Hallo, kamaleonti,

die [mm] $\epsilon$-Umgebung [/mm] liefert keinen Widerspruch. $f$ kann ja innerhalb der [mm] $\epsilon$-Umgebung [/mm] konstant sein.

Wir können aber nur voraussetzen, daß $f$ auf ganz $[a,b]$ nicht konstant ist. Dies wird z. B. auch von $f(a)=0$, $f(x)=1$, für [mm] $x\in [/mm] (a, b]$ erfüllt, aber auf jeder offenen Umgebung, die ganz in $(a, b]$ liegt, ist $f$ konstant und damit konvex. Nicht dagegen auf ganz $[a,b]$, wo $f$ weder konstant noch konvex ist.

Gruß,
Wolfgang

Bezug
                        
Bezug
konvex ist kompl(iziert)ex: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Mi 30.05.2012
Autor: Marschal

Dann würde mein Beweis also nicht funktionieren?:

Annahme: Sei [mm] f(\xi ) [/mm] das Maximum von [mm] f [/mm] auf [mm] (a,b) [/mm]. Da [mm] f [/mm] inkonstant ist gibt es ein [mm] \kappa \in [a,b] [/mm] mit [mm] f(\kappa ) < f(\xi ) [/mm].
Œ ist [mm] \kappa \in \{\xi -\varepsilon ,\ \xi +\varepsilon \}\subset I [/mm]

Dann gilt für [mm] t= \frac{1}{2} [/mm]:

$ [mm] f\left(\frac{\xi}{2}-\frac{\varepsilon}{2}+\frac{\xi}{2}+\frac{\varepsilon}{2}\right)= f(\xi [/mm] )\ [mm] \leq\ \frac{1}{2}f(\xi [/mm] - [mm] \varepsilon [/mm] )+ [mm] \frac{1}{2}f(\xi [/mm] + [mm] \varepsilon [/mm] )\ =\ [mm] \underbrace{\frac{1}{2}\big(f(\xi - \varepsilon )+f(\xi + \varepsilon )\big)}_{

Bezug
                                
Bezug
konvex ist kompl(iziert)ex: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Mi 30.05.2012
Autor: kamaleonti


> Dann würde mein Beweis also nicht funktionieren?:

Helbig hat Recht, leider nein.

>  
> Annahme: Sei [mm]f(\xi )[/mm] das Maximum von [mm]f[/mm] auf [mm](a,b) [/mm]. Da [mm]f[/mm]
> inkonstant ist gibt es ein [mm]\kappa \in [a,b][/mm] mit [mm]f(\kappa ) < f(\xi ) [/mm].
>  
> Œ ist [mm]\kappa \in \{\xi -\varepsilon ,\ \xi +\varepsilon \}\subset I[/mm]

Die Existenz von [mm] \varepsilon>0 [/mm] ist hier nicht gesichert.

Nimm o. E. [mm] \kappa<\xi [/mm] an.
Wegen [mm] \xi\in(a,b) [/mm] gibt es ein [mm] \eta\in(\xi, [/mm] b).

Dann liegt die Sekante durch [mm] f(\kappa) [/mm] und [mm] f(\eta) [/mm] nicht für alle [mm] x\in(\kappa,\eta) [/mm] oberhalb des Graphen von f.
Konkret liegt [mm] f(\xi) [/mm] über dieser Sekante [...]

LG



Bezug
                                        
Bezug
konvex ist kompl(iziert)ex: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:17 Fr 01.06.2012
Autor: Marschal

Ich habe alles! Cool! Vielen Danke euch!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]