www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - konvergenzsatz in Lp
konvergenzsatz in Lp < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenzsatz in Lp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:15 So 08.01.2012
Autor: hula

Hallöchen!

Ich studiere einen Beweise, sehe aber nicht folgende Implikation, vielleicht kann mir ja jemand helfen.

Wieso gilt: [mm] $(X_n)$ [/mm] sei ein Martingal. Wenn $ [mm] E(sup_n |X_n|^p)< \infty [/mm] $ dann konvergiert [mm] $(X_n)$ [/mm] in $ [mm] L^p$. [/mm]

Wäre super wenn mir jemand sagen könnte, wieso dies gilt.

greetz

hula

        
Bezug
konvergenzsatz in Lp: Literatur
Status: (Antwort) fertig Status 
Datum: 13:36 Mo 09.01.2012
Autor: cetin

Hallo,

die Antwort zu deiner Frage ist ein klassisches Resultat im Gebiet Martingaltheorie und geht auf Doob zurück. Hier die Formulierung:

Sei X= [mm] (Xn)_{n \in \IN} [/mm] ein Martingal. Dann gilt:
  X konvergiert genau dann im [mm] L^p, [/mm] wenn X bezüglich der [mm] L^p [/mm] Norm  berschränkt ist.

Der Beweis ist nicht allzu schwer. Du findest ihn beispielsweise in: Kallenberg; Foundations of Modern Probability, 1997,
Korollar 6.22, Seite 109.  

Bist du an einem genauen Beweis interessiert oder reicht dir meine Antwort?

Gruß

Cetin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]