www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - konvergenz reihe
konvergenz reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenz reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Sa 05.12.2015
Autor: Jops

Aufgabe
[mm] \summe_{i=1}^{\infty}((\bruch{3}{4})^n+(\bruch{1}{6})^n) [/mm]
konvergiert diese reihe


also ich würde sagen ja, da es sich um eine Nullfolge handenlt oder?

        
Bezug
konvergenz reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Sa 05.12.2015
Autor: fred97


> [mm]\summe_{i=1}^{\infty}((\bruch{3}{4})^n+(\bruch{1}{6})^n)[/mm]
>  konvergiert diese reihe
>  also ich würde sagen ja, da es sich um eine Nullfolge
> handenlt oder?

Nein. Die Reihe konvergiert,weil sie die Summe zweier konvergenter geometrischer Reihen ist.

Fred

Bezug
                
Bezug
konvergenz reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Sa 05.12.2015
Autor: Jops

Ok danke wie fasse ich die Reihe am Besten zusammen? Mit gemeinsamen nenner und  ZUsammenfassen würde sie nicht mehr konvergieren


Bezug
                        
Bezug
konvergenz reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Sa 05.12.2015
Autor: leduart

Hallo
warum zusammenfassen, in 2 Reihen teilen ist das Richtige.
wie willst du sie denn auf einen gemeinsamen Nenner bringen? und wenn sie konvergiert, dann konvergiert sie, auch wenn du sie -richtig- umschreibst.
Gruß leduart

Bezug
                                
Bezug
konvergenz reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 So 06.12.2015
Autor: Jops

wie finde ich hier die summe raus?
[mm] (4\5 +1\3)^n? [/mm] oder  getrennt betrachten?

Bezug
                                        
Bezug
konvergenz reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 So 06.12.2015
Autor: DieAcht

Hallo Jops!


Du musst mit den Indizes aufpassen! Meinst du vielleicht

      [mm] $\sum_{n=0}^{\infty}\left(\left(\frac{3}{4}\right)^n+\left(\frac{1}{6}\right)^n\right)$ [/mm] ?

Wegen der Konvergenz gilt

      [mm] $\sum_{n=0}^{\infty}\left(\left(\frac{3}{4}\right)^n+\left(\frac{1}{6}\right)^n\right)=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^n+\sum_{n=0}^{\infty}\left(\frac{1}{6}\right)^n$. [/mm]

Jetzt wieder du!


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]