www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - konvergente Folgen
konvergente Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergente Folgen: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 21:14 Mi 19.11.2008
Autor: Studentin87

Aufgabe
Untersuchen Sie, ob die Folgen konvergieren und bestimmen Sie die Grenzwerte der konvergenten Folgen.
a) [mm] a_{n}= \wurzel{n+1}-\wurzel{n} [/mm]
b) [mm] b_{n}= \bruch{1+2+...+n}{n+2}-\bruch{n}{2} [/mm]
c) [mm] c_{n}=\bruch{1*3*5*...*(2n-1)}{3*6*9*...*3n} [/mm]

Leider haben wir in der Vorlesung konvergente Folgen nicht sehr ausführlich besprochen. Deswegen weiß ich auch nicht wie ich bei diesen Aufgaben anfangen soll. Ich kenne zwar die Definition,aber vielleicht kann mir ja jemand beim Beweis behilflich sein.

        
Bezug
konvergente Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Mi 19.11.2008
Autor: abakus


> Untersuchen Sie, ob die Folgen konvergieren und bestimmen
> Sie die Grenzwerte der konvergenten Folgen.
>  a) [mm]a_{n}= \wurzel{n+1}-\wurzel{n}[/mm]

Hallo,
erweitere hier mit  [mm] \wurzel{n+1}+\wurzel{n}. [/mm] Dann wirds ganz easy.


>  b) [mm]b_{n}= \bruch{1+2+...+n}{n+2}-\bruch{n}{2}[/mm]

Kennst du die Summenformel 1+2+...+n=n(n+1)/2 ?

>  
> c) [mm]c_{n}=\bruch{1*3*5*...*(2n-1)}{3*6*9*...*3n}[/mm]

Zerlege in Teilprodukte:
[mm] \bruch{1*3*5*...*(2n-1)}{3*6*9*...*3n}=\bruch{1}{3}*\bruch{3}{6}*\bruch{5}{9}*...\bruch{2n-1}{3n} [/mm] und weise nach, dass jedes Teilprodukt kleiner als 2/3 ist (und [mm] (2/3)^n [/mm] ist schon eine Nullfolge.
Gruß Abakus



>  Leider haben wir in der Vorlesung konvergente Folgen nicht
> sehr ausführlich besprochen. Deswegen weiß ich auch nicht
> wie ich bei diesen Aufgaben anfangen soll. Ich kenne zwar
> die Definition,aber vielleicht kann mir ja jemand beim
> Beweis behilflich sein.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]