www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - konverg
konverg < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konverg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 Sa 13.11.2004
Autor: ThomasK

hab mal wieder probleme mit:

(a) Zeigen Sie, dass eine Folge (an) in C genau dann gegen a [mm] \in [/mm] C konvergiert, wenn gilt:
Jede Teilfolge von (an) besitzt eine gegen a konvergente Teilfolge.
(b) Es besitze jede Teilfolge von (an) eine konvergente Teilfolge. Konvergiert dann (an)?

kann mir jemand ein Tipp geben oder irgendein anderes Beispiel geben wie das funkioneren soll?

mfg
Thomas


        
Bezug
konverg: Bolzano-Weierstraß
Status: (Antwort) fertig Status 
Datum: 03:55 So 14.11.2004
Autor: Wessel

Hallo Thomas,

guck Dir mal den Satz von Bolzano-Weierstraß an. Vielleicht hilft der Dir weiter.

Gruß,

Stefan

Bezug
        
Bezug
konverg: Teilfolge
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:39 So 14.11.2004
Autor: baddi

Hallo, nu mein Gedanke.
Wenn jede Teilfolge von C (sollen dass die Komplexen Zahlen sein?)
konvergiert, konvergiert natürlich auch das Ganze.
Warum ?
Nun, die Menge aller möglicher Teilfolgen gibt ja wieder die Ganze Folge.
Und eine mögliche Teilfolge ist ja auch die Folge selbst.
Und außerdem als Teilfolge gillt ja auch die Folge selbst.
Teilmengen bezeichnung schliest ja Gleichheit nicht aus.
Also wenn alle konvergieren konvergiert die Folge selbst, auch weil Sie ja in dem "alle" drin ist.
Das waren meine Gedanken, kann sein das die Aufgabe so nicht gedacht war.
Mal sehen
Gruß baddi

Bezug
        
Bezug
konverg: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Mi 17.11.2004
Autor: Stefan

Hallo Thomas!

zur a) Die eine Richtung ist trivial. Jetzt zur anderen Richtung: Würde [mm] $(a_n)_{n \in \IN}$ [/mm] nicht gegen $a$ konvergieren, so gäbe es zu einem  [mm] $\varepsilon [/mm] >0$ unendlich viele Folgenglieder $a'_{n}$ mit

[mm] $\vert [/mm] a'_{n} - a [mm] \vert [/mm] > [mm] \varepsilon$. [/mm]

Dann wäre [mm] $(a'_{n})_{n \in \IN}$ [/mm] eine Teilfolge von [mm] $(a_n)_{n \in \IN}$, [/mm] die offenbar keine gegen $a$ konvergente Teilfolge enthält, Widerspruch.

zu b) Natürlich nicht. Betrachte: [mm] $a_n=(-1)^n$. [/mm]

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]