www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - konv. konkave Fkt
konv. konkave Fkt < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konv. konkave Fkt: Idee
Status: (Frage) beantwortet Status 
Datum: 14:21 So 30.11.2014
Autor: ivanhoe

Aufgabe
Sei $p$ eine konkave, nicht negative Funktion auf $[0,L]$. Dann kann man eine Folge von konkaven, strikt positiven 2mal stetig differenzierbaren Funktionen [mm] $p_k$ [/mm] finden, so dass $p$ der [mm] $L^\infty$ [/mm] Grenzwert von [mm] $p_k$ [/mm] ist.


Hallo Leute,

ich bin mir nicht sicher, ob meine Idee funktioniert, daher dachte ich, ich frage hier mal nach. Ich wollte [mm] $p_k$ [/mm] wie folgt definieren und ich denke, dass jetzt alle wichtigen Eigenschaften erfüllt sind, also strikt positiv ist sie durch das [mm] $+\bruch{1}{k}$ [/mm] und konkav ist sie immernoch, denke ich, und differenzierbar ist [mm] $p_k$ [/mm] auch, also passt alles. Kann ich das so machen?

[mm] p_k(x) [/mm] = [mm] \bruch{1}{\varepsilon}\integral_{0}^{\varepsilon} {\overline{p}(x+t) dt + \bruch{1}{k}} [/mm]

wobei

[mm] \overline{p}(x) [/mm] = [mm] \bruch{1}{\varepsilon} \integral_{0}^{\varepsilon}{p(x+s) ds} [/mm]

Ich bedanke mich schonmal für die Hilfestellungen.

Viele Grüße,
ivanhoe

        
Bezug
konv. konkave Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 So 30.11.2014
Autor: fred97


> Sei [mm]p[/mm] eine konkave, nicht negative Funktion auf [mm][0,L][/mm]. Dann
> kann man eine Folge von konkaven, strikt positiven 2mal
> stetig differenzierbaren Funktionen [mm]p_k[/mm] finden, so dass [mm]p[/mm]
> der [mm]L^\infty[/mm] Grenzwert von [mm]p_k[/mm] ist.
>  
> Hallo Leute,
>
> ich bin mir nicht sicher, ob meine Idee funktioniert, daher
> dachte ich, ich frage hier mal nach. Ich wollte [mm]p_k[/mm] wie
> folgt definieren und ich denke, dass jetzt alle wichtigen
> Eigenschaften erfüllt sind, also strikt positiv ist sie
> durch das [mm]+\bruch{1}{k}[/mm] und konkav ist sie immernoch, denke
> ich, und differenzierbar ist [mm]p_k[/mm] auch, also passt alles.
> Kann ich das so machen?
>  
> [mm]p_k(x)[/mm] = [mm]\bruch{1}{\varepsilon}\integral_{0}^{\varepsilon} {\overline{p}(x+t) dt + \bruch{1}{k}}[/mm]
>  
> wobei
>
> [mm]\overline{p}(x)[/mm] = [mm]\bruch{1}{\varepsilon} \integral_{0}^{\varepsilon}{p(x+s) ds}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> Ich bedanke mich schonmal für die Hilfestellungen.


1.Deine Folge (p_k) konvergiert gleichmäßig gegen \bruch{1}{\varepsilon}\integral_{0}^{\varepsilon} {\overline{p}(x+t) dt

". Wenn p nicht stetig ist, so wird p_k i.a. nicht 2-mal stetig differenzierbar sein.

FRED



>  
> Viele Grüße,
>  ivanhoe


Bezug
                
Bezug
konv. konkave Fkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:34 So 30.11.2014
Autor: ivanhoe

Okay danke, ich habe mir schon gedacht, dass das nicht so leicht ist.

Gibt es denn einen anderen Ansatz, der funktionieren würde?



Bezug
                        
Bezug
konv. konkave Fkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:53 So 30.11.2014
Autor: ivanhoe

Würde es zB so funktionieren:

1. ich bilde eine Zerlegung [mm] $Z_k$ [/mm] in k Teile des Invervalls $[0,L]$

2. jetzt bilde ich eine Treppenfunktion [mm] $t_k$, [/mm] die so definiert sein soll, dass [mm] $t_k(x) [/mm] > p(x)$ für alle x.

3. ich glätte die Treppenfunktion so, dass die Sprungstellen stetig miteinander verbunden werden zu einer neuen stetigen Funktion [mm] $p_k$, [/mm] die immernoch die bedingung erfüllen muss, also [mm] $p_k(x) [/mm] > p(x)$.

4. wenn ich mich nicht irre, dann ist [mm] $p_k$ [/mm] stetig und differenzierbar, strikt größer als $p$, damit strikt positiv, konkav und konvergiert mit $k [mm] \to \infty$ [/mm] gegen $p$

Bezug
                                
Bezug
konv. konkave Fkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 02.12.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
konv. konkave Fkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 02.12.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]