www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - konv. folgen kompl. zahlen
konv. folgen kompl. zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konv. folgen kompl. zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 So 02.12.2007
Autor: Schneckal36

Aufgabe
3. Zeigen sie: Jede Zahl z [mm] \in \IC [/mm] ist Nullstelle eines Polynoms vom Grad zwei über [mm] \IR [/mm] (d.h. eines Polynoms mit reellen Koeffizienten)

4. Zeigen sie: Ist [mm] (z_{n})_{n\in\IN} [/mm] eine konvergente Folge komplexer Zahlen, so ist [mm] (|z_{n}|)_{n\in\IN} [/mm] eine konvergente Folge reeller Zahlen. Gilt die Umkehrung?

ich hab überhaupt keinen plan wie ich da ansetzten soll... des find ich alles so unlogisch, ich kann des auch mathematisch irgendiwe nicht hinschreiben, vielleicht kann mir ja von euch einer helfen!
mfg


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
konv. folgen kompl. zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:07 So 02.12.2007
Autor: schachuzipus

Hallo Schneckal,

ihr hattet doch bestimmt den Satz, dass, wenn [mm] $z\in\IC$ [/mm] eine Nullstelle ist, so ist auch [mm] $\overline{z}$ [/mm] eine Nullstelle.

Nimm dir also eine beliebige komplexe Zahl [mm] $z=a+b\cdot{}i$ [/mm] her und konstruiere daraus dein Polynom:

Da $z, [mm] \overline{z}$ [/mm] Nullstellen sein sollen, kannst du das als Linearfaktoren schreiben:

[mm] $(x-z)(x-\overline{z})=(x-(a+b\cdot{}i))(x-(a-b\cdot{}i))=...$ [/mm]

Das verrechne mal...


Bei der anderen Aufgabe kannst du die konvergente komplexe Folge [mm] $z_n$ [/mm] schreiben als [mm] $z_n=x_n+i\cdot{}y_n$, [/mm] also in die (konvergenten) Folgen von Real- und Imaginärteil aufteilen.

Hierbei gilt mit [mm] $\lim\limits_{n\to\infty}z_n=z\, (=x+i\cdot{}y)\Rightarrow \lim\limits_{n\to\infty}x_n=x$ [/mm] und [mm] $\lim\limits_{n\to\infty}y_n=y$ [/mm]

Die Folge des Realteils von [mm] $z_n$ [/mm] konvergiert also gegen den Realteil von $z$ und genauso für den Imaginärteil.

Damit sollte die erste Richtung einfach sein.

Für die Rückrichtung kannst du dir ein nicht allzu schwieriges Gegenbsp überlegen.

Probiere ein bisschen mit einfachen, rein imaginären Folgen rum... ;-)


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]