www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - komplexer Zeiger in Normalform
komplexer Zeiger in Normalform < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexer Zeiger in Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Fr 22.01.2010
Autor: phily

Aufgabe
Ein komplexer Zeiger sei durch [mm] z_{1}=\bruch{j}{1-(2+j)^{2}} [/mm] gegeben.

a) Drücken SIe ihn durch seine kartesische Normalform aus.
b) Für welchen Wert von a bilden der Zeiger [mm] z_{2}= [/mm] a+3j und [mm] z_{1} [/mm] einen rechten Winkel?

Hey.
Ich habe bei dieser Aufgabe schon Probleme mit der kartesischen Normalform, die ja x-j*y lautet. Doch wie überführe ich den gegebenen Zeiger in diese Form?? Muss ich da mit dem konjugiert komplexen Nenner arbeiten oder so?? Kann mir da jemand helfen?
Und bei Aufgabe b) könnt ich mir vorstellen, dass ich mit der trigonometrischen Form arbeiten muss...allerding fehlt mir da komplett der Ansatz.
Wäre echt um jede Hilfe dankbar!!
Gruß phily

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
komplexer Zeiger in Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Fr 22.01.2010
Autor: fencheltee


> Ein komplexer Zeiger sei durch [mm]z_{1}=\bruch{j}{1-(2+j)^{2}}[/mm]
> gegeben.
>  
> a) Drücken SIe ihn durch seine kartesische Normalform
> aus.
>  b) Für welchen Wert von a bilden der Zeiger [mm]z_{2}=[/mm] a+3j
> und [mm]z_{1}[/mm] einen rechten Winkel?
>  Hey.
>  Ich habe bei dieser Aufgabe schon Probleme mit der
> kartesischen Normalform, die ja x-j*y lautet. Doch wie
> überführe ich den gegebenen Zeiger in diese Form?? Muss
> ich da mit dem konjugiert komplexen Nenner arbeiten oder
> so?? Kann mir da jemand helfen?

also erstmal die klammer auflösen, zusammenfassen im nenner, dann komplex erweitern zum 3. binom, und alles zusammenfassen

>  Und bei Aufgabe b) könnt ich mir vorstellen, dass ich mit
> der trigonometrischen Form arbeiten muss...allerding fehlt
> mir da komplett der Ansatz.
>  Wäre echt um jede Hilfe dankbar!!
>  Gruß phily

mh, wenn man mit j multipliziert, entspricht das einem um 90° vorwärts gedrehten zeiger, eine mit -j um 90° rückwärts.. wenn dann der gedrehte zeiger ein vielfaches des anderen zeigers ist, so sollten sie senkrecht stehen, wenn ich mich grad nicht ganz täusche ;-)

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

gruß tee

Bezug
                
Bezug
komplexer Zeiger in Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 So 07.03.2010
Autor: Zaibatsi


>  mh, wenn man mit j multipliziert, entspricht das einem um
> 90° vorwärts gedrehten zeiger, eine mit -j um 90°
> rückwärts.. wenn dann der gedrehte zeiger ein vielfaches
> des anderen zeigers ist, so sollten sie senkrecht stehen,
> wenn ich mich grad nicht ganz täusche ;-)

Kann ich das (Aufgabe b) vielleicht einmal vorgerechnet bekommen? Ich hatte mir vor Monaten die Lösung mal erarbeitet, aber die ist weg, jetzt komm ich einfach nicht mehr drauf :(

Ich weiss nur noch, dass es ne recht kurze einfache Umstellungsgeschichte war

Bezug
                        
Bezug
komplexer Zeiger in Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Mo 08.03.2010
Autor: fred97

Sind [mm] $z_1= x_1+jy_1$ [/mm]  und [mm] $z_2= x_2+jy_2$ [/mm]  gegeben , so bilden deren Zeiger einen rechten Winkel [mm] \gdw $x_1x_2+y_1y_2 [/mm] = 0$

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]