www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - komplexe partialbruchzerlegung
komplexe partialbruchzerlegung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 So 02.12.2012
Autor: bluemchenchen

Aufgabe
[mm] 2x^2-3/x^3-2x^2+x-2 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich soll hier die komplexe partialbruchzerlegung machen, doch leider habe ich nicht wirklich ahnung.
das allerdings ein bruch sein.
die reelle partialbruchzerlegung bei der aufgabe habe ich geschafft.
gruß



        
Bezug
komplexe partialbruchzerlegung: Klammern
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 So 02.12.2012
Autor: M.Rex


> [mm]2x^2-3/x^3-2x^2+x-2[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> ich soll hier die komplexe partialbruchzerlegung machen,
> doch leider habe ich nicht wirklich ahnung.
>  das allerdings ein bruch sein.
>  die reelle partialbruchzerlegung bei der aufgabe habe ich
> geschafft.
>  gruß
>  
>  

Setze bitte Klammern, damit der Zähler und der Nenner klar sind.

So, wie du es stehen hast, ist [mm] $2x^2-\frac{3}{x^3}-2x^2+x-2$ [/mm] gemeint.

Marius


Bezug
                
Bezug
komplexe partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 So 02.12.2012
Autor: bluemchenchen

[mm] (2x^2-3)/(x^3-2x^2+x-2) [/mm]

so das ganze nochmal mit klammern zur verdeutlichung

Bezug
        
Bezug
komplexe partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 So 02.12.2012
Autor: M.Rex


> [mm]2x^2-3/x^3-2x^2+x-2[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> ich soll hier die komplexe partialbruchzerlegung machen,
> doch leider habe ich nicht wirklich ahnung.
>  das allerdings ein bruch sein.
>  die reelle partialbruchzerlegung bei der aufgabe habe ich
> geschafft.
>  gruß
>  
>  

Dann zeige doch wenigstens mal die Relle PBZ, dann könnten wir die Nenner fast übernehmen.

Ausserdem
[mm] x^{3}-2x^{2}+x-2=x^{3}+x-2x^{2}-2=x\cdot(x^{2}+1)-2\cdot(x^{2}+1)=(x-2)\cdot(x^{2}+1) [/mm]

Überlege mal, wie x²+1 in [mm] \IC [/mm] zerlegt wird.

Marius


Bezug
                
Bezug
komplexe partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:26 So 02.12.2012
Autor: bluemchenchen

reelle partualbruchzerlegung: 1/(x-2) + (x+2)/(×^2+1)

Bezug
                
Bezug
komplexe partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:31 So 02.12.2012
Autor: bluemchenchen

reelle partialbruchzerlegung ist ja:
[mm] \bruch{1}{x-2} [/mm] + [mm] \bruch{x+2}{x^2+1} [/mm]

Bezug
                
Bezug
komplexe partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 So 02.12.2012
Autor: bluemchenchen

die nullstellen von [mm] x^2+1=0 [/mm] sind x=  i  und x= -i


Bezug
                        
Bezug
komplexe partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 So 02.12.2012
Autor: M.Rex


> die nullstellen von [mm]x^2+1=0[/mm] sind x=  i  und x= -i

Das ist ok.

Also wird in [mm] \IC: [/mm]

[mm] x^3-2x^2+x-2=x^3+x-2x^2-2=x(x^2+1)-2(x^2+1)=(x-2)(x^2+1)=(x-2)(x+i)(x-i) [/mm]

Mache damit nun die Partialbruchzerlegung
[mm] \frac{A}{x-2}\cdot\frac{B}{x-i}\cdot\frac{C}{x-i}=\frac{2x^{2}-3}{(x-2)(x+i)(x-i)} [/mm]

Marius

P.S.: Stelle Rückfragen ruhig als Fragen, dann lesen es mehr potentielle Helfer.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]