www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - komplexe exponenten
komplexe exponenten < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe exponenten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 So 06.06.2010
Autor: damulon

Aufgabe
schreiben sie die folgenden zahlen in der Form a*e^(i*x) oder a+b*i

a) [mm] \bruch{1}{i} [/mm] +1
b) [mm] \bruch{2}{e^(2*i)} [/mm]
c) [mm] \wurzel{e^(\bruch{3* \pi *i}{2})} [/mm]

hi zusammen,
ich hab da probleme mit den aufgaben.
ich weiß nicht was ich mit dem i achen soll wenn es unten im nenner steht. was muss ich dann für des x bei e^(i*x) einsetzten??

bei der b) hab ich auch des gleiche problem mit dem bruch.ich weiß net so richtig wieich des dann umrechenen soll.

bei der c) irritiert mich die wurzel und der bruch beim e.wie soll ich des denn als a+b*i ausdrücken???

hoff ihr könnt mir helfen

gruß damulon

        
Bezug
komplexe exponenten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 So 06.06.2010
Autor: schachuzipus

Hallo damulon,

> schreiben sie die folgenden zahlen in der Form a*e^(i*x)
> oder a+b*i
>  
> a) [mm]\bruch{1}{i}[/mm] +1
>  b) [mm]\bruch{2}{e^{2*i}}[/mm]
>  c) [mm]\wurzel{e^(\bruch{3* \pi *i}{2})}[/mm]
>  hi zusammen,
>  ich hab da probleme mit den aufgaben.
>  ich weiß nicht was ich mit dem i achen soll wenn es unten
> im nenner steht.

Erweitere mit dem komplex Konjuguerten des Nenners, um selbigen reell zu machen:

Dann kannst du in Normalform darstellen und dir anschließend bei Bedarf überlegen, ob und wie du es in Eulerform darstellen kannst.

Allg.: [mm] $z\cdot{}\overline{z}=|z|^2\in\IR$ [/mm]

Hier also [mm] $\frac{1}{i}=\frac{-i}{i\cdot{}(-i)}=\ldots$ [/mm]

> was muss ich dann für des x bei e^(i*x)
> einsetzten??

Das kannst du am Koordinatensystem ablesen, wenn du die Normalform hast ...

>  
> bei der b) hab ich auch des gleiche problem mit dem
> bruch.ich weiß net so richtig wieich des dann umrechenen
> soll.

Potenzgesetze?

[mm] $\frac{1}{z^n}=z^{-n}$ [/mm]

Also ...

>  
> bei der c) irritiert mich die wurzel und der bruch beim
> e.wie soll ich des denn als a+b*i ausdrücken???

Überlege erst einmal, wie du [mm] $e^{\frac{3\pi\cdot{}i}{2}}$ [/mm] als $a+bi$ darstellen kannst, das ist ein ganz einfacher Ausdruck.

Danach [mm] $\sqrt{(\ldots)}$ [/mm] ...

>  
> hoff ihr könnt mir helfen
>  
> gruß damulon

LG

schachuzipus

Bezug
                
Bezug
komplexe exponenten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:29 So 06.06.2010
Autor: damulon

danke...
man ich mach da immer solche banalen fehler...
noch n schönes wochenende

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]