www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - komplexe Fourierreihe
komplexe Fourierreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Fourierreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Sa 10.11.2012
Autor: BunDemOut

Aufgabe
Der bei x=0 eine Sprungstelle habende Sägezahnimpuls ist in eine Fourierreihe zu entwickeln:
[mm] f(x)=x-\pi [/mm] für x [mm] \in [/mm] [0, [mm] 2\pi) [/mm]

Ich habe den komplexen Ansatz verwendet und erhalte:

[mm] c_k=\bruch{2 i}{k}, [/mm] also [mm] f(x)=2i*\summe_{k=-\infty}^{\infty} \bruch{e^{ikx}}{k} [/mm]

Möchte ich das nun als reelle Fourierreihe schreiben, muss ich doch nur [mm] e^{ikx}=i*sin(kx)+cos(kx) [/mm] verwenden richtig?
Damit erhalte ich [mm] f(x)=2i*\summe_{k=-\infty}^{\infty} \bruch{i*sin(kx)+cos(kx)}{k} [/mm]

Der Cosinus irritiert mich aber, weil in der Lösung keiner angegeben ist. Anders gefragt, aus welchen Gründen fliegt der raus?

Danke für eure Hilfe.

        
Bezug
komplexe Fourierreihe: Ungerade
Status: (Antwort) fertig Status 
Datum: 18:18 Sa 10.11.2012
Autor: Infinit

Hallo BunDemOut,
male Dir die Funktion doch mal auf. Sie ist zur y-Achse ungerade und kann demzufolge keine Cosinusterme enthalten.
Wenn Du irgendwo einen drin hast, hast Du Dich sicherlich verrechnet.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]