www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - komplexe Differenzierbarkeit
komplexe Differenzierbarkeit < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Differenzierbarkeit: Differenzenquotienten
Status: (Frage) beantwortet Status 
Datum: 13:53 So 11.12.2011
Autor: Anfaenger101

Aufgabe
An welchen Stellen sind die folgenden Funktionen komplex differenzierbar? Begründen Sie jeweils über die Cauchy-Riemann-Differentialgleichungen als auch über den Differenzenquotienten.

i) f(z) := [mm] \overline{z}z^{2} [/mm]
ii) f(x+iy) := [mm] x^{3}-3xy^{2}+i(3x^{2}y-y^{3}) [/mm]

Hallo Leute,

die Argumentation über die Cauchy-Riemann-Differentialgleichungen hab ich geschafft und damit rausbekommen, dass die Funktion in i) nur in z=0 komplex differenzierbar ist, die Funktion in ii) hingegen ist auf ganz [mm] \IC [/mm] komplex differenzierbar.

Mich nervt jetzt allerdings, dass man dies nochmals zeigen muss und zwar mit der Definition über den Differenzenquotienten.

Bei i) habe ich: [mm] \bruch{f(z)-f(a)}{z-a} [/mm] = [mm] \bruch{\overline{z}z^{2}-\overline{a}a^{2}}{z-a} [/mm] = [mm] \bruch{z|z|^{2}-a|a|^{2}}{z-a} [/mm] wobei a [mm] \in \IC. [/mm] Jetzt müsste ich zeigen, dass dieser Bruch genau dann konvergiert (für z geht gegen a), wenn a=0 gilt, doch ich hab leider nicht den blassesten Dunst, wie ich das anstellen soll.

Bei ii) siehts auch nicht besser aus. Mit u(x,y) := [mm] x^{3}-3xy^{2} [/mm] und v(x,y) := [mm] 3x^{2}y-y^{3} [/mm] sieht man, dass u(x,y) = - v(x,y) gilt.
Setzt man dies alles in den Differenzenquotienten, so erhält man nur einen sehr unübersichtlichen Ausdruck, der mir nicht weiterhilft.

Wäre nett, wenn mir hier jemand die entscheidenden Hinweise geben könnte.

Viele Grüße

        
Bezug
komplexe Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 So 11.12.2011
Autor: Helbig


> An welchen Stellen sind die folgenden Funktionen komplex
> differenzierbar? Begründen Sie jeweils über die
> Cauchy-Riemann-Differentialgleichungen als auch über den
> Differenzenquotienten.
>  
> i) f(z) := [mm]\overline{z}z^{2}[/mm]
> Mich nervt jetzt allerdings, dass man dies nochmals zeigen
> muss und zwar mit der Definition über den
> Differenzenquotienten.
>
> Bei i) habe ich: [mm]\bruch{f(z)-f(a)}{z-a}[/mm] =
> [mm]\bruch{\overline{z}z^{2}-\overline{a}a^{2}}{z-a}[/mm] =
> [mm]\bruch{z|z|^{2}-a|a|^{2}}{z-a}[/mm] wobei a [mm]\in \IC.[/mm] Jetzt
> müsste ich zeigen, dass dieser Bruch genau dann
> konvergiert (für z geht gegen a), wenn a=0 gilt, doch ich
> hab leider nicht den blassesten Dunst, wie ich das
> anstellen soll.

Zeige zunächst, daß der Differenzenquotient für $a=0$ konvergiert.
Dies ist einfach.

Um zu zeigen, daß der Differenzenquotient für [mm] $a\ne [/mm] 0$ nicht konvergiert, gibst Du zwei Folgen komplexer Zahlen an, die beide gegen $a$ konvergieren, aber so, daß die Grenzwerte der Differenzenquotienten verschieden sind.

Versuche mal [mm] $z_n=a*(1+1/n)$ [/mm] und [mm] $z_n=a*(1-1/n)$. [/mm]

Reicht das schon mal?

Grüße,
Wolfgang

Bezug
                
Bezug
komplexe Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 So 11.12.2011
Autor: Anfaenger101

Hallo Wolfgang,

vielen Dank für deine Antwort!
Die Idee, wie man jetzt zeigen soll, dass der Limes des Differenzenquotienten für a ungleich null nicht existiert ist mir klar.

Ich hab das jetzt mal mit den beiden Folgen, welche du vorgeschlagen hast, gemacht. Allerdings bekomme ich da bei beiden Grenzwerten der Differenzenquotienten dasselbe raus (nämlich null).

Habe ich mich hier verrechnet, oder muss ich noch eine andere Folge [mm] z_{n} [/mm] finden, welche für n gegen unendlich gegen a konvergiert?

Liebe Grüße

Bezug
                        
Bezug
komplexe Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 So 11.12.2011
Autor: Helbig


> vorgeschlagen hast, gemacht. Allerdings bekomme ich da bei
> beiden Grenzwerten der Differenzenquotienten dasselbe raus
> (nämlich null).
>  
> Habe ich mich hier verrechnet, oder muss ich noch eine
> andere Folge [mm]z_{n}[/mm] finden, welche für n gegen unendlich
> gegen a konvergiert?

Ich hab' nochmal nachgerechnet und erhalte [mm] $3*|a|^2$ [/mm] und [mm] $-3*|a|^2$. [/mm]
Rechne doch auch noch mal nach.

Gruß,
Wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]