www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - komplexe Brüche
komplexe Brüche < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Brüche: Auf bestimmte Form bringen
Status: (Frage) beantwortet Status 
Datum: 10:58 So 22.01.2017
Autor: fse

Aufgabe
Kann man [mm] \bruch{\bruch{R_2}{i \omega C_2 R_2+1}}{R1+\bruch{1}{i \omega C_1}} [/mm] auf die Form
[mm] \bruch{\produkt_{i=1}^{n} 1+\bruch{j\omega}{\alpha_i}}{\produkt_{i=1}^{n}1+\bruch{i\omega}{\beta_i}}.Ggf.mit [/mm] konstantem vorfaktor bringen ?


Ich bin jetzt bei
[mm] Z=\bruch{R_2}{i\omega C_2*R_2+1}*\bruch{iwC_1}{R_1(i \omega C_1+1)} [/mm]
Hab aber das Gefühl das man gar nicht auf die Form kommen kann. (Jetzt müsste ich die beiden Brüche ja konjugiert komplex erweitern ...oder ?
Grüße fse

        
Bezug
komplexe Brüche: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 So 22.01.2017
Autor: leduart

Hallo
wenn du die falsche Klammer im zweiten Bruch weglässt hast du im Nenner schon das richtige. im Zähler steht eine rein komplexe Zahl, da benutze, dass [mm] a*(1+i)^2=2a* [/mm] i ist
Gruß leduart

Bezug
                
Bezug
komplexe Brüche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:20 Mo 23.01.2017
Autor: fse

Danke ! Das ist mir aber nicht ganz klar. Würde in meinem Fall ja dann
[mm] \Z=\bruch{1}{2}\bruch{R_2*wC_1*(1+i)^2}{i\omega C_2\cdot{}R_2+1}\cdot{}\bruch{1}{R_1i \omega C_1+1} [/mm]
Ergeben aber das [mm] \omega [/mm] ist ja dann außerhalb der Klammer und nicht bei dem i wie es in der gewünschten Form der Fall ist.
Grüße fse

Bezug
                        
Bezug
komplexe Brüche: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Di 24.01.2017
Autor: leduart

Hallo
du hast A*i du willst A*i=(1+ia)*(1+ib) daraus a,b bestimmen.
Gruß leduart

Bezug
                        
Bezug
komplexe Brüche: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Di 24.01.2017
Autor: X3nion

Hallo,

aus dem Tipp von leduart, nämlich das Setzen von A*i = (1+a*i)(1+b*i) folgt:
A*i= 1 + b*i + a*i + [mm] i^{2} [/mm] * ab
<=> A*i = 1 -ab + (a+b)*i

Koeffizientenvergleich ergibt:
1 - ab = 0   (I)
a + b = A    (II)

Man erhält ein Gleichungssystem, welches man z.B. lösen kann, indem man in (II) nach a umformt, also a = A - b, und den Ausdruck für a in (I) einsetzt.
In (I) ergibt sich eine Gleichung mit der Unbekannten b, welche mithilfe der Mitternachtsformel gelöst werden kann.
Damit erhält man a durch a = A-b


In deinem Fall [mm] Z=\bruch{R_2}{i\omega C_2\cdot{}R_2+1}\cdot{}\bruch{iwC_1}{R_1*i \omega C_1+1)} [/mm]

ist A * i = [mm] R_{2} \omega C_{1} [/mm] * i

und somit A = [mm] R_{2} \omega C_{1} [/mm]

Führe nun die Schritte durch, um a und b zu erhalten. Dann schauen wir weiter ;-)  es geht auf jeden Fall, habe es soeben nachgerechnet, es kommen halt ein paar Wurzeln vor, von denen du dich allerdings nicht abschrecken lassen sollst!

VG X3nion

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]