www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - komplanare Vektoren
komplanare Vektoren < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplanare Vektoren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:45 Fr 12.05.2006
Autor: transparent

Aufgabe
Sind die folgenden Vektoren komplanar?

a= 3/3/-1, b= 2/-4/6, c= 14/-1/12

Hallo,
bin mir nicht sicher, wie ich diese Aufgabe lösen muss... Haben im Unterricht etwas von Vektoren aneinanderschieben besprochen, aber ich weiß nicht, wie ich das machen soll, noch, wie ich dann auf die Komplanaritätsbedingung komme.
ich wäre euch sehr dankbar, wenn ihr mir helfen könntet.
lieber gruß, transparent


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
komplanare Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Fr 12.05.2006
Autor: Herby

Hallo transparent,

ich gehe mal davon aus, dass ihr das in Form eines Gleichungssystems lösen sollt.

Dazu ist:  [mm] \vec{a}=k*\vec{b}+m*\vec{c} [/mm] zu prüfen.


Setze deine Koordinaten ein und du erhältst ein Gleichnungssystem mit drei Gleichungen und zwei Unbekannten.

Ist es lösbar, so sind die Vektoren komplanar :-)



Liebe Grüße
Herby

Bezug
        
Bezug
komplanare Vektoren: Zusatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:02 Fr 12.05.2006
Autor: Herby

Oh...


hatte vergessen die Begründung zu liefern ;-)


Komplanare Vektoren sind linear abhängig, d.h. lassen sich als Linearkombination anderer Vektoren darstellen.



lg
Herby

Bezug
        
Bezug
komplanare Vektoren: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:11 Fr 12.05.2006
Autor: transparent

und was sind k und m, vielmehr, wie komme ich auf die beiden und was hat meine Rechnung dann mit Ebenen zu tun?
Wir haben vorher entwickelt, wie man überprüft, ob 2 Ebenen gleich sind. Das gehört jetzt aber nicht zu dieser Aufgabe, oder doch? Fehlt dann nicht eine Ebenengleichung oder muss ich mir die entwickeln oder hat diese Aufgabe nichts mit Ebenen zu tun?

Bezug
                
Bezug
komplanare Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Fr 12.05.2006
Autor: Herby

Hi,


k und m sind unbekannte Größen, die du durch das Gleichungssystem herausbekommst.


[mm] \vektor{ a_1 \\ a_2 \\ a_3 }=\red{\vektor{ 0 \\ 0\\ 0 }}+k*\vektor{ b_1 \\ b_2 \\ b_3 }+m*\vektor{ c_1 \\ c_2 \\ c_3 } [/mm]


[mm] a_1=k*b_1+m*c_1 [/mm]

[mm] a_2=k*b_2+m*c_2 [/mm]

[mm] a_3=k*b_3+m*c_3 [/mm]


Dieses Gleichungssystem kannst du entweder durch das Gleichsetzungs-, Additions- oder Einsetzverfahren lösen.


Eine Ebenengleichung benötigst du hierfür (fast) nicht ;-)


Liebe Grüße
Herby

Bezug
                
Bezug
komplanare Vektoren: Zusatz 2
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:29 Fr 12.05.2006
Autor: Herby



.. deine Vektoren sind übrigens linear abhängig



lg
Herby

Bezug
                
Bezug
komplanare Vektoren: bessere Erklärung
Status: (Antwort) fertig Status 
Datum: 13:42 Fr 12.05.2006
Autor: Herby

Hallo nochmal,


naja, im Grunde hast du ja eine Ebenengleichung, mit Aufpunkt (0 | 0 | 0) und den Richtungsvektoren zu den Punkten B und C.
Jetzt prüfst du ob A in der Ebene liegt.

war das besser :-)



Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]