www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - kompl. konj Fkt. holomorph
kompl. konj Fkt. holomorph < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kompl. konj Fkt. holomorph: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:01 Mo 18.04.2016
Autor: lisa2802

Aufgabe
Sei U [mm] \subset \in \IC [/mm]  eine offene Teilmenge und f : U [mm] \to \in \IC [/mm] eine holomorphe Funktion. Wir bezeichnen mit V := [mm] U^{konj.} [/mm] := { z [mm] \in \IC [/mm] | [mm] \overline{z} \in [/mm] U } die komplex konjugierte Menge. Zeigen Sie die Funktion g : V [mm] \to \in \IC, [/mm] die durch g(z) [mm] :=\overline{f(\overline{z)}} [/mm] definiert ist, ist ebenfalls holomorph.

Hallöchen,
ich muss obige Aufgabe lösen.
Dazu :
Def aus Skript:
Eine Abbildung f : U [mm] \to \IC [/mm] , mit U [mm] \subset \IC [/mm] offen, heißt
1) komplex diff'bar in [mm] z_{0} \in [/mm] U [mm] \gdw [/mm]
[mm] \limes_{z\rightarrow z_{0}} \bruch{f(z)-f(z_{0})}{z-z_{0}} [/mm] = [mm] f'(z_{0}) [/mm] existiert
2) holomorph (auf U) wenn f in allen Punkten [mm] z_{0} \in [/mm] U komplex differenzierbar ist.

würde gerne 1) aus der Definition auf g anwenden also :

[mm] \limes_{z\rightarrow z_{0}} \bruch{g(z)-g(z_{0})}{z-z_{0}} [/mm] =

[mm] \limes_{\overline{z}\rightarrow \overline{z_{0}}} \bruch{\overline{f(\overline{z)}}-\overline{f(\overline{z_{0})}}}{\overline{z}-\overline{z_{0}}} [/mm] =
vermutlich verwende ich als nächstes, dass [mm] \overline{a}+\overline{b}=\overline{a+b} [/mm]

so aber nun weiß ich nicht genau wie ich weiter vorgehen soll. Bin mir auch nicht sicher ob in Zeile 2 in den Nenner und  [mm] \overline{z}-\overline{z_{0}} [/mm] muss oder nur [mm] z-z_{0} [/mm] ebenso bei [mm] \limes_{\overline{z}\rightarrow \overline{z_{0}}}. [/mm]

Nach aufgabenstellung ist f ja holomorph, also gilt dafür ja [mm] \limes_{z\rightarrow z_{0}} \bruch{f(z)-f(z_{0})}{z-z_{0}} [/mm] = [mm] f'(z_{0}) [/mm]
bzw [mm] \limes_{z\rightarrow z_{0}} \bruch{f(z)-f(z_{0})}{z-z_{0}} [/mm] - [mm] \underbrace{f'(z_{0})}_{=r} [/mm] = 0

das werde ich ja benutzen müssen um für g zu zeigen, dass g holomorph ist.
Könnt ihr mir da vielleicht mal weiter helfen ?

Danke :))

        
Bezug
kompl. konj Fkt. holomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 05:32 Di 19.04.2016
Autor: fred97


> Sei U [mm]\subset \in \IC[/mm]  eine offene Teilmenge und f : U [mm]\to \in \IC[/mm]
> eine holomorphe Funktion. Wir bezeichnen mit V := [mm]U^{konj.}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> := { z [mm]\in \IC[/mm] | [mm]\overline{z} \in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

U } die komplex

> konjugierte Menge. Zeigen Sie die Funktion g : V [mm]\to \in \IC,[/mm]
> die durch g(z) [mm]:=\overline{f(\overline{z)}}[/mm] definiert ist,
> ist ebenfalls holomorph.
>  Hallöchen,
> ich muss obige Aufgabe lösen.
> Dazu :
> Def aus Skript:
>  Eine Abbildung f : U [mm]\to \IC[/mm] , mit U [mm]\subset \IC[/mm] offen,
> heißt
>  1) komplex diff'bar in [mm]z_{0} \in[/mm] U [mm]\gdw[/mm]
> [mm]\limes_{z\rightarrow z_{0}} \bruch{f(z)-f(z_{0})}{z-z_{0}}[/mm]
> = [mm]f'(z_{0})[/mm] existiert
>  2) holomorph (auf U) wenn f in allen Punkten [mm]z_{0} \in[/mm] U
> komplex differenzierbar ist.
>  
> würde gerne 1) aus der Definition auf g anwenden also :
>  
> [mm]\limes_{z\rightarrow z_{0}} \bruch{g(z)-g(z_{0})}{z-z_{0}}[/mm]
> =
>  
> [mm]\limes_{\overline{z}\rightarrow \overline{z_{0}}} \bruch{\overline{f(\overline{z)}}-\overline{f(\overline{z_{0})}}}{\overline{z}-\overline{z_{0}}}[/mm]


Das stimmt nicht. Es ist

[mm] \bruch{g(z)-g(z_{0})}{z-z_{0}}=\bruch{\overline{f(\overline{z)}}-\overline{f(\overline{z_{0})}}}{z-z_0} [/mm]

FRED

> =
>  vermutlich verwende ich als nächstes, dass
> [mm]\overline{a}+\overline{b}=\overline{a+b}[/mm]
>  
> so aber nun weiß ich nicht genau wie ich weiter vorgehen
> soll. Bin mir auch nicht sicher ob in Zeile 2 in den Nenner
> und  [mm]\overline{z}-\overline{z_{0}}[/mm] muss oder nur [mm]z-z_{0}[/mm]
> ebenso bei [mm]\limes_{\overline{z}\rightarrow \overline{z_{0}}}.[/mm]
>  
> Nach aufgabenstellung ist f ja holomorph, also gilt dafür
> ja [mm]\limes_{z\rightarrow z_{0}} \bruch{f(z)-f(z_{0})}{z-z_{0}}[/mm]
> = [mm]f'(z_{0})[/mm]
> bzw [mm]\limes_{z\rightarrow z_{0}} \bruch{f(z)-f(z_{0})}{z-z_{0}}[/mm]
> - [mm]\underbrace{f'(z_{0})}_{=r}[/mm] = 0
>  
> das werde ich ja benutzen müssen um für g zu zeigen, dass
> g holomorph ist.
>  Könnt ihr mir da vielleicht mal weiter helfen ?
>
> Danke :))


Bezug
        
Bezug
kompl. konj Fkt. holomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 06:54 Di 19.04.2016
Autor: Leopold_Gast

Die Umformung ist nicht korrekt. Wie fred97 schon bemerkt hat, gilt:

[mm]\lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = \lim_{z \to z_0}\frac{\overline{f(\overline{z})} - \overline{f(\overline{z_0})}}{z - z_0}[/mm]

Und jetzt ist das Ganze graphisch etwas schwierig darzustellen. Wichtig ist: Die komplexe Konjugation ist mit allen Grundrechenarten verträglich. Im Zähler kannst du daher, wie schon von dir vermutet,

[mm]\overline{f(\overline{z})} - \overline{f(\overline{z_0}} = \overline{f(\overline{z}) - f(\overline{z_0})}[/mm]

verwenden. Und im Nenner kannst du

[mm]z - z_0 = \overline{\overline{z - z_0}} = \overline{\overline{z} - \overline{z_0}}[/mm]

schreiben. Die großen Querstriche kannst du wegen [mm]\frac{\overline{A}}{\overline{B}} = \overline{\ \left( \frac{A}{B} \right) \ }[/mm] zu einem einzigen Querstrich über den ganzen Bruch verbinden. Und dann mußt du nur noch beachten, daß, wenn [mm]z \to z_0[/mm] strebt, auch [mm]\overline{z} \to \overline{z_0}[/mm] strebt (Stetigkeit der komplexen Konjugation). Damit hast du unter dem Querstrich den Differenzenquotienten mit der "Umbenennung" der ungequerten Größen zu gequerten. Die gequerten Größen liegen aber in [mm]U[/mm] (beachte die Definition von [mm]V[/mm]).

Bezug
                
Bezug
kompl. konj Fkt. holomorph: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:41 Di 19.04.2016
Autor: lisa2802

Vielen Dank schonmal!

okay, ich versuche es nochmal.


[mm] \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} [/mm] =

[mm] \lim_{z \to z_0}\frac{\overline{f(\overline{z})} - \overline{f(\overline{z_0})}}{z - z_0} [/mm] =  

mit  [mm] \overline{a}+ \overline{b}=\overline{a+b} [/mm] und a+b = [mm] \overline{\overline{a+b}} =\overline{\overline{a}+ \overline{b}} [/mm]

[mm] \lim_{z \to z_0}\frac{\overline{f(\overline{z})-f(\overline{z})}}{\overline{\overline{z}+ \overline{z_{0}}}} [/mm] =

mit [mm] \bruch{\overline{a}}{\overline{b}} [/mm] = [mm] \overline{(\bruch{a}{b})} [/mm]

[mm] \lim_{z \to z_0}\overline{(\frac{f(\overline{z})-f(\overline{z})}{\overline{z}+ \overline{z_{0}}})} [/mm] =

wenn z [mm] \to z_0 [/mm] dann muss auch [mm] \overline{z} \to \overline{z_0} [/mm] (stetigkeit der komplexen konjugation)

[mm] \lim_{\overline{z} \to \overline{z_0}}\overline{(\frac{f(\overline{z})-f(\overline{z})}{\overline{z}+ \overline{z_{0}}})} [/mm] =

da f holomorph und f: U [mm] \to \IC, \overline{z} \in [/mm] U gilt :
[mm] \overline{f'(\overline{z_0})} [/mm] =

[mm] g'(z_{0}) [/mm]

Die Vorausetzungen für f,g stehen ja in der Aufgabenstellung.

Ist das so richtig und vollständig?

Vielen lieben Dank!


Bezug
                        
Bezug
kompl. konj Fkt. holomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Di 19.04.2016
Autor: Leopold_Gast

Du hast aus dem Minus im Nenner ein Plus gemacht. Und bei [mm]z_0[/mm] ist die 0 verschwunden.
Laß auch [mm]z \to z_0[/mm] stehen. Es gibt keinen Grund, hier mit konjugierten Elementen zu hantieren.
Ansonsten stimmt alles. Ich würde nur [mm]g'(z_0)[/mm] an den Anfang der Rechnung stellen, nicht an den Schluß. Und vielleicht wäre es übersichtlicher, die Rechnung nicht durch Kommentare zu unterbrechen, sondern diese Kommentare auf der Seite in einer Art Kommentarspalte mitzuführen.

Bezug
        
Bezug
kompl. konj Fkt. holomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Di 19.04.2016
Autor: fred97

Weitere Möglichkeit: sei u:=Re(f) und v:=Im(f).

Sind U und V der Realteil bzw. der Imaginärteil von g, so gilt:

U(x,y)=u(x,-y) und V(x,y)=-v(x,-y).

Klar dürfte sein, dass U und V reell differenzierbar sind. Da u und v die Cauchy-Riemannschen DGLen erfüllen, trifft das auch auf U und V zu, wie man sofort nachrechnet.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]