kompakt, stetig < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:58 Mo 01.02.2010 | Autor: | nooschi |
Aufgabe | M kompakt, f stetig [mm] \Rightarrow [/mm] f(M) kompakt |
hallo zusammen.
Ich habe eine Frage zu einem Schritt in einem Beweis. und zwar steht da in meinem Skript ganz am Anfang des Beweises "[mm]M[/mm] kompakt, [mm]f[/mm] stetig [mm] \Rightarrow[/mm] [mm]f(M)[/mm] kompakt" was ich nicht nachvollziehen kann.
Da es einfach so hingeschrieben wurde, denke ich, dass es wohl ziemlich offensichtlich sein muss, aber ich bin wohl zu blöd das zu sehen.
Weitere Angaben die vielleicht nützlich sein können:
Der Satz der zu Beweisen ist:
Sei [mm]M\subset X[/mm] ([mm] (X, \parallel\cdot\parallel_{X}) [/mm] ist ein normierter Vektorraum), [mm]M\not=\emptyset[/mm], kompakt und [mm]f\in C(M,\IR)[/mm] (also stetige Funktion von [mm]M[/mm] nach [mm] \IR). [/mm] Dann nimmt [mm]f[/mm] auf [mm]M[/mm] ihr Maximum und Minimum an, d.h. es gibt [mm]\underline{x}\in M[/mm] und [mm]\overline{x}\in M[/mm] mit: [mm] $$f(\underline{x})\le [/mm] f(x) [mm] \le f(\overline{x})\ [/mm] \ \ [mm] \forall x\in [/mm] M$$
unsere Def. von kompakt:
M heisst kompakt, wenn jede offene Überdeckung von M eine endliche Teilüberdeckung enthält.
äquivalent:
Jede Folge in M besitzt einen HP in M.
und noch was direkt aus Kompaktheit folgt:
M ist kompakt [mm] \Rightarrow [/mm] M ist beschränkt
M ist kompakt [mm] \Rightarrow [/mm] M ist abgeschlossen
zu Stetigkeit haben wir alles Mögliche, also mit den Grenzwerten von den Folgen, mit den Umgebungen von x und f(x), [mm]\epsilon - \delta [/mm]-Kriterium......
danke schonmal für die Hilfe
|
|
|
|
Hallo nooschi,
Es ist "relativ" offensichtlich, wenn es dasteht, uns nur, wenn man die richtigen Definitionen nimmt
Also, wir nehme die Häufungspunktdefinition von der kompakten Menge,
und die Folgendefinition der Stetigkeit.
M kompakt, f stetig.
Sei [mm] y_{n} [/mm] eine beliebige Folge aus f(M). Dann existiert eine entsprechende Folge [mm] $(x_{n})_{n\in\IN}\subset [/mm] M$ mit [mm] $f(x_{n}) [/mm] = [mm] y_{n}$ [/mm] für alle [mm] n\in\IN.
[/mm]
Da [mm] $(x_{n})_{n\in\IN}\subset [/mm] M$ eine Folge in der kompakten Menge M, hat [mm] $(x_{n})_{n\in\IN}$ [/mm] einen HP [mm] $x\in [/mm] M$. Das bedeutet, es gibt eine Teilfolge [mm] $(x_{n_{k}})_{k\in\IN}$ [/mm] von [mm] $(x_{n})_{n\in\IN}$ [/mm] mit [mm] $(x_{n_{k}})\to [/mm] x$ [mm] (k\to\infty).
[/mm]
Entsprechend ergibt sich durch die Teilfolgenbildung von [mm] $(x_{n})_{n\in\IN}$ [/mm] eine Teilfolge [mm] $(y_{n_{k}})_{k\in\IN}$ [/mm] von [mm] $(y_{n})_{n\in\IN}$.
[/mm]
Dann gilt:
[mm] $(y_{n_{k}}) [/mm] = [mm] f(x_{n_{k}}) \to [/mm] f(x) [mm] \in [/mm] f(M)$ [mm] (k\to\infty),
[/mm]
da [mm] x\in [/mm] M. Die Konvergenz gilt eben gerade wegen der Stetigkeit von f.
Damit ist aber gerade ein Häufungspunkt von [mm] y_{n} [/mm] gefunden.
Grüße,
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:55 Mo 01.02.2010 | Autor: | nooschi |
vielen Dank!!
> Es ist "relativ" offensichtlich
also zumindest wenn man die eine Zeile als ca 10 Zeilen darstellt, wird das ganze sehr offensichtlich
|
|
|
|