www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - kollineare Vektoren
kollineare Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kollineare Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 So 10.05.2009
Autor: Mandy_90

Aufgabe
Sind [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] kollinear, so sind auch [mm] \vec{x}=\vec{a}+\vec{b} [/mm] und [mm] \vec{y}=\vec{a}-\vec{b} [/mm] kollinear.Beweisen Sie diese Aussage!

Hallo^^

Ich hab mal versucht,die Aufgabe zu lösen,aber an einer Stelle komme ich nicht mehr weiter.

[mm] \vec{a}+\vec{b}=r*(\vec{a}-\vec{b}) [/mm]  

[mm] \vektor{a_{1} \\ a_{2}}*\vektor{b_{1} \\ b_{2}}=r* [/mm]
[mm] \vektor{a_{1} \\ a_{2}}-r*\vektor{b_{1} \\ b_{2}} [/mm]

Dann hab ich folgendes LGS:

[mm] a_{1}+b_{1}=r*a_{1}-r*b_{1} [/mm]

[mm] a_{2}+b_{2}=r*a_{2}-r*b_{2} [/mm]

Ich hab jetzt versucht irgendwie das LGS zu lösen,aber das klappt nicht richtig.Stimmt das denn bis hier hin so und wie kann man denn weiterrechnen???

Vielen Dank

lg

        
Bezug
kollineare Vektoren: Lösungshinweise
Status: (Antwort) fertig Status 
Datum: 17:07 So 10.05.2009
Autor: weightgainer

Hallo Mandy_90,

du kannst ja die Voraussetzung noch benutzen, denn du weißt ja schon, dass [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] kollinear sind, d.h. es gibt ein r [mm] \in \IR\backslash\{0\}, [/mm] so dass [mm] \vec{b} [/mm] = [mm]r*\vec{a}[/mm].

Genau so etwas musst du jetzt für die beiden Vektoren [mm] \vec{x} [/mm] = [mm] \vec{a} [/mm] + [mm] \vec{b} [/mm] und [mm] \vec{y}= \vec{a} [/mm] - [mm] \vec{b} [/mm] finden, d.h. nachweisen, dass der eine ein Vielfaches des anderen Vektors ist.

Wenn du jetzt deinen Vektor [mm] \vec{b} [/mm] durch [mm]r*\vec{a}[/mm] ersetzt, dann sehen [mm] \vec{x} [/mm] und [mm] \vec{y} [/mm] so aus:
[mm] \vec{x} [/mm] = [mm] \vec{a} [/mm] + [mm]r*\vec{a} = (1+r)*\vec{a}[/mm]
[mm] \vec{y} [/mm] = [mm] \vec{a} [/mm] - [mm]r*\vec{a} = (1-r)*\vec{a}[/mm]

Jetzt ist das eigentlich schon klar, denn beide Vektoren sind ein Vielfaches von [mm] \vec{a}. [/mm] Formal solltest du jetzt noch die beiden Fälle r=1 und r [mm] \ne [/mm] 1 unterscheiden. Für r=1 ist es klar, denn dann ist [mm] \vec{y} [/mm] der Nullvektor, der kollinear zu allen anderen ist.
Für r [mm] \ne [/mm] 1 kannst du jetzt ausrechnen, das wievielfache [mm] \vec{x} [/mm] von [mm] \vec{y} [/mm] ist:
[mm]\vec{x} = \bruch{1+r}{1-r}*\vec{y}[/mm]

Also müssen [mm] \vec{x} [/mm] und [mm] \vec{y} [/mm] kollinear sein.

Man kann das natürlich noch ein bisschen schöner aufschreiben, aber ich hoffe, die Idee wird klar :-).

Gruß,
weightgainer

Bezug
                
Bezug
kollineare Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 Mo 11.05.2009
Autor: Mandy_90

Ok,jetzt hab ichs verstanden,vielen Dank =)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]