www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - kleinste Nullstelle
kleinste Nullstelle < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kleinste Nullstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Sa 26.12.2009
Autor: luna90

Aufgabe
Sei f : [a, b] [mm] \to [/mm] R stetig, f(a) [mm] \le [/mm] 0 und f(b) [mm] \ge [/mm] 0. Zeigen Sie, dass f eine kleinste Nullstelle besitzt.

Hallo,
ich hab mich in den Ferien an diese Aufgabe gesetzt und frag mich ob ich das richtig durchdacht habe, also mir fällt nichts anderes ein, aber ich bin halt unsicher. Es wäre toll, wenn mir einer etwas dazu sagen könnte :)
also:

z.z. f besitzt eine kleinste Nullstelle

Beweis:

i) z.z. Existenz einer Nullstelle

nach dem Zwischenwertsatz existiert für f(a) [mm] \le [/mm] 0 und f(b) [mm] \ge [/mm] 0 ein x mit  a [mm] \le [/mm] x [mm] \ge [/mm] b sodass f(x) = 0

ii) z.z. Existenz einer kleinsten Nullstelle

sei M : = { x | f(x) = 0}

da f(a) [mm] \le [/mm] 0 , gilt a [mm] \le [/mm] inf(M) [mm] \Rightarrow [/mm] es existiert ein Infimum von M

bleibt zu zeigen dass inf(M) [mm] \in [/mm] M , sodass inf(M) = min(M) und somit eine kleinste Nullstelle existiert.

sei inf (M) = L und die Folge von M [mm] (c_{n}) [/mm] mit [mm] \limes_{x\rightarrow a} (c_{n}) [/mm] = L

da f stetig ist, gilt:

[mm] lim(f(c_{n}) [/mm] = 0 = [mm] f(lim(c_{n}) [/mm] = f(L) [mm] \Rightarrow [/mm] f(L) = 0
deshalb gilt L [mm] \in [/mm] M
                                                                [mm] \Box [/mm]

vielen Dank schon einmal
lg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
kleinste Nullstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Sa 26.12.2009
Autor: MatthiasKr

Hallo,
> Sei f : [a, b] [mm]\to[/mm] R stetig, f(a) [mm]\le[/mm] 0 und f(b) [mm]\ge[/mm] 0.
> Zeigen Sie, dass f eine kleinste Nullstelle besitzt.
>  Hallo,
>  ich hab mich in den Ferien an diese Aufgabe gesetzt und
> frag mich ob ich das richtig durchdacht habe, also mir
> fällt nichts anderes ein, aber ich bin halt unsicher. Es
> wäre toll, wenn mir einer etwas dazu sagen könnte :)
>  also:
>  
> z.z. f besitzt eine kleinste Nullstelle
>  
> Beweis:
>  
> i) z.z. Existenz einer Nullstelle
>  
> nach dem Zwischenwertsatz existiert für f(a) [mm]\le[/mm] 0 und
> f(b) [mm]\ge[/mm] 0 ein x mit  a [mm]\le[/mm] x [mm]\ge[/mm] b sodass f(x) = 0
>

yep.

> ii) z.z. Existenz einer kleinsten Nullstelle
>  
> sei M : = { x | f(x) = 0}
>  
> da f(a) [mm]\le[/mm] 0 , gilt a [mm]\le[/mm] inf(M) [mm]\Rightarrow[/mm] es existiert
> ein Infimum von M
>  
> bleibt zu zeigen dass inf(M) [mm]\in[/mm] M , sodass inf(M) = min(M)
> und somit eine kleinste Nullstelle existiert.
>  
> sei inf (M) = L und die Folge von M [mm](c_{n})[/mm] mit
> [mm]\limes_{x\rightarrow a} (c_{n})[/mm] = L
>  
> da f stetig ist, gilt:
>  
> [mm]lim(f(c_{n})[/mm] = 0 = [mm]f(lim(c_{n})[/mm] = f(L) [mm]\Rightarrow[/mm] f(L) =
> 0
>  deshalb gilt L [mm]\in[/mm] M
>                                                            
>      [mm]\Box[/mm]

die menge der nullstellen ist abgeschlossen, richtig.

ich denke, deine loesung ist ok!  [daumenhoch]

gruss
Matthias

>  
> vielen Dank schon einmal
>  lg
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
kleinste Nullstelle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 Di 27.07.2010
Autor: Kuriger

Hallo Matthias

Brauchst du eine Tastatur wo man die Laute ä, ö, ü findet? Gruss Kuriger

Bezug
                        
Bezug
kleinste Nullstelle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:33 Di 27.07.2010
Autor: fred97


> Hallo Matthias
>  
> Brauchst du eine Tastatur wo man die Laute ä, ö, ü
> findet? Gruss Kuriger

Na Du witzbold, schau mal insein Profil:

MatthiasKr : Matthias Krüger · [pn] · Wohnort: Auckland (Neuseeland) [mm] \Leftarrow \Leftarrow [/mm]


In Neuseeland benutzt jeder eine deutsche Tastatur !!!!


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]