www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - kgv mit Dezimalzahlen
kgv mit Dezimalzahlen < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kgv mit Dezimalzahlen: KgV
Status: (Frage) beantwortet Status 
Datum: 18:57 Do 16.01.2014
Autor: huligalli

Ich habe diese Werte gegeben:
27,66 und 72. Aus diesen beiden Zahlen soll ich nun den KgV berechnen. Nur wie? Meine Probleme damit:

Ich weiß, dass die 3 durch die 27 und der 66 geht. Nur verstehe ich jetzt nicht, wie ich rechnen soll? Es ist keine Hausaufgabe, eine reine Übungssache für mich, an der ich leider scheiter... :(

Kann mir wer sagen, wie ich das berechne? Die 3 passt ja 9 Mal in die 27. jedoch muss die 3 * 22 gerechnet werden, damit dort die 66 rauskommt. Wie gehe ich da vor? Wäre super, wenn man mir da den Rechenweg mal zeigen kann, damit ich das in Zukunft alleine kann.

Vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
kgv mit Dezimalzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Do 16.01.2014
Autor: Steffi21

Hallo, zerlege zunächst in Primfaktoren

[mm] 27=3*3*3=3^3 [/mm]

[mm] 66=2*3*11=2^1*3^1*11^1 [/mm]

[mm] 72=2*2*2*3*3=2^3*3^2 [/mm]

du hast die Primzahlen 2, 3 und 11, jetzt wähle jeweils den größten Exponenten aus, [mm] 2^3, 3^3 [/mm] und [mm] 11^1, [/mm] multipliziere

[mm] 2^3*3^3*11^1=2376, [/mm] das k.g.V

Steffi



Bezug
                
Bezug
kgv mit Dezimalzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:26 Do 16.01.2014
Autor: mmhkt

Guten Abend,
hm, zwischen deiner Antwort und der Frage gibt es einen Unterschied:

Die Frage bezieht sich m.E. auf die Zahlen 27,66 und 72.
Du hast anscheinend das Komma als Aufzählungskomma angesehen - ich als "Dezimalkomma" (falls es diesen Ausdruck gibt).

In der Frage steht aber auch: [...]diese beiden Zahlen[...]
Nach meiner Auffassung also keine Aufzählung.

Was im weiteren Text vom Fragesteller aber wieder über den Haufen geworfen wird, wenn es dann doch um die 66 als eigene Zahl geht.

Was gilt denn nun?

Das kGV wäre doch bei so einer "krummen Zahl" wie 27,66 am ehesten per Multiplikation mit der 72 zu finden.
Das wäre dann 1991,52.

Ob der Fragesteller uns wohl aufklärt?


Schönen Gruß
mmhkt


Bezug
                        
Bezug
kgv mit Dezimalzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:43 Fr 17.01.2014
Autor: glie


> Guten Abend,
>  hm, zwischen deiner Antwort und der Frage gibt es einen
> Unterschied:
>  
> Die Frage bezieht sich m.E. auf die Zahlen 27,66 und 72.
>  Du hast anscheinend das Komma als Aufzählungskomma
> angesehen - ich als "Dezimalkomma" (falls es diesen
> Ausdruck gibt).
>  
> In der Frage steht aber auch: [...]diese beiden
> Zahlen[...]
>  Nach meiner Auffassung also keine Aufzählung.
>  
> Was im weiteren Text vom Fragesteller aber wieder über den
> Haufen geworfen wird, wenn es dann doch um die 66 als
> eigene Zahl geht.
>  
> Was gilt denn nun?
>  
> Das kGV wäre doch bei so einer "krummen Zahl" wie 27,66 am
> ehesten per Multiplikation mit der 72 zu finden.
>  Das wäre dann 1991,52.
>  
> Ob der Fragesteller uns wohl aufklärt?

Hallo,

ich hab die Frage auch so verstanden wie du.
Allerdings hab ich mit deiner vorgeschlagenen 1991,52 so meine Probleme.
Denn das ist ja das 72-fache von 27,66 und gleichzeitig das 27,66-fache von 72.
Wenn man aber jetzt auch gebrochene Vielfache anstatt nur ganzzahliger Vielfacher zulässt, dann könntest du ja auch 1 als kgV nehmen, das wäre das [mm] $\bruch{1}{72}$-fache [/mm] von 72 und gleichzeitig das [mm] $\bruch{50}{1383}-fache [/mm] von 27,66 ;-)

Ich kenn den Begriff des kgV eigentlich nur im Zahlbereich der ganzen Zahlen.

Und wenn ich das mit Dezimalzahlen machen müsste, dann würde ich zumindest das kleinste ganzzahlige Vielfache der beiden suchen.

Ich würde das kgV von 2766 und 7200 bestimmen, das sollte 3319200 sein.
Da passt die 2766 genau 1200 mal hinein, und die 7200 passt da 461 mal hinein.
Also würde ich als kgV von 27,66 und 72 die Zahl 33192 nehmen.

Gruß Glie

>  
>
> Schönen Gruß
>  mmhkt
>  


Bezug
                                
Bezug
kgv mit Dezimalzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:25 Fr 17.01.2014
Autor: Steffi21

Hallo, ok, die Aufgabe ist zweideutig gestellt, zunächst "aus diesen beiden Zahlen", dann wird die 66 ausdrücklich erwähnt, somit drei ganze Zahlen, was eigentlich auch einer 6. Klasse entspricht, schön wäre, wenn die Auflösung vom Fragesteller kommt, Steffi

Bezug
                                        
Bezug
kgv mit Dezimalzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:01 Fr 17.01.2014
Autor: Marcel

Hallo,

> Hallo, ok, die Aufgabe ist zweideutig gestellt, zunächst
> "aus diesen beiden Zahlen", dann wird die 66 ausdrücklich
> erwähnt, somit drei ganze Zahlen, was eigentlich auch
> einer 6. Klasse entspricht, schön wäre, wenn die
> Auflösung vom Fragesteller kommt, Steffi

ich glaube, dass die Überschrift nicht passt und es eigentlich um den kgV
der drei Zahlen geht - so, wie Du die Aufgabe auch verstanden hast.

Gruß,
  Marcel

Bezug
                                
Bezug
kgv mit Dezimalzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:42 Fr 17.01.2014
Autor: Marcel

Hallo,

> > Guten Abend,
>  >  hm, zwischen deiner Antwort und der Frage gibt es einen
> > Unterschied:
>  >  
> > Die Frage bezieht sich m.E. auf die Zahlen 27,66 und 72.
>  >  Du hast anscheinend das Komma als Aufzählungskomma
> > angesehen - ich als "Dezimalkomma" (falls es diesen
> > Ausdruck gibt).
>  >  
> > In der Frage steht aber auch: [...]diese beiden
> > Zahlen[...]
>  >  Nach meiner Auffassung also keine Aufzählung.
>  >  
> > Was im weiteren Text vom Fragesteller aber wieder über den
> > Haufen geworfen wird, wenn es dann doch um die 66 als
> > eigene Zahl geht.
>  >  
> > Was gilt denn nun?
>  >  
> > Das kGV wäre doch bei so einer "krummen Zahl" wie 27,66 am
> > ehesten per Multiplikation mit der 72 zu finden.
>  >  Das wäre dann 1991,52.
>  >  
> > Ob der Fragesteller uns wohl aufklärt?
>  
> Hallo,
>  
> ich hab die Frage auch so verstanden wie du.
> Allerdings hab ich mit deiner vorgeschlagenen 1991,52 so
> meine Probleme.
>  Denn das ist ja das 72-fache von 27,66 und gleichzeitig
> das 27,66-fache von 72.
>  Wenn man aber jetzt auch gebrochene Vielfache anstatt nur
> ganzzahliger Vielfacher zulässt, dann könntest du ja auch
> 1 als kgV nehmen, das wäre das [mm]$\bruch{1}{72}$-fache[/mm] von
> 72 und gleichzeitig das [mm]$\bruch{50}{1383}-fache[/mm] von 27,66
> ;-)
>  
> Ich kenn den Begriff des kgV eigentlich nur im Zahlbereich
> der ganzen Zahlen.

den gibt es allgemeiner: Sei [mm] $R\,$ [/mm] faktorieller Ring und $a,b [mm] \in [/mm] R.$ Dann ist [mm] $\kgV(a,b)=:c \in [/mm] R$
ein(!) Element aus [mm] $R\,$ [/mm] so, dass

    [mm] $a|c\,$ [/mm] und [mm] $b|c\,$ [/mm]

und:

    Für jedes $d [mm] \in [/mm] R$ mit [mm] $a|d\,$ [/mm] und [mm] $b|d\,$ [/mm] folgt [mm] $c|d\,.$ [/mm]

Ich glaube allerdings auch, dass hier [mm] $R=\IZ$ [/mm] ist!

P.S. [mm] $\kgV(a,b)\,$ [/mm] ist nur eindeutig bis auf Assoziiertheit! (Und da in [mm] $\IQ$ [/mm] schon [mm] $\IQ \setminus \{0\}$ [/mm] die
[]Einheitengruppe ist, würde ich mich bei der Aufgabe nach dem Sinn fragen, wenn da die
Zahl 27,66 gemeint wäre...)

P.P.S. Diese Definition findet man (ähnlich) in

    Müller-Stach, Piontkowskis "Elementare und algebraische Zahlentheorie", 2. Auflage, Def 3.12

Gruß,
  Marcel

Bezug
                                
Bezug
kgv mit Dezimalzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:53 Fr 17.01.2014
Autor: mmhkt

Hallo glie,
Du hast recht mit dem ganzzahligen kGV - deine Erklärung dazu ist gut verständlich.
Wieder was gelernt - danke schön.

Schönen Gruß
mmhkt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]