www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - isomorphismus
isomorphismus < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

isomorphismus: wie zeige ich einen isomorphis
Status: (Frage) beantwortet Status 
Datum: 02:29 Di 04.12.2007
Autor: gossyk

Aufgabe
X, Y sind zwei K-Vektorräume mit endlicher Dimension. f [mm] \in [/mm] Hom(X,Y), g [mm] \in [/mm] Hom(Y,X)

es gilt f [mm] \circ [/mm] g [mm] \circ [/mm] f = f und g [mm] \circ [/mm] f [mm] \circ [/mm] g =g

meine vermutung ist, dass f und g isomorphismen sind und das möchte ich zeigen.

das problem ist ich weiss nicht wie.

kann ich einfach unbegründet (da man es sieht) sagen f = g^(-1), damit ist f umkehrbar und ein isomorphismus?
oder bedarf es einer besseren beweisführung...

        
Bezug
isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 10:00 Di 04.12.2007
Autor: angela.h.b.


> X, Y sind zwei K-Vektorräume mit endlicher Dimension. f [mm]\in[/mm]
> Hom(X,Y), g [mm]\in[/mm] Hom(Y,X)
>  
> es gilt f [mm]\circ[/mm] g [mm]\circ[/mm] f = f und g [mm]\circ[/mm] f [mm]\circ[/mm] g =g
>  meine vermutung ist, dass f und g isomorphismen sind und
> das möchte ich zeigen.
>  
> das problem ist ich weiss nicht wie.
>  
> kann ich einfach unbegründet (da man es sieht) sagen f =
> g^(-1), damit ist f umkehrbar und ein isomorphismus?


Hallo,

Du glaubst doch nicht wirklich, das man das kann!

>  oder bedarf es einer besseren beweisführung...

Es bedarf nicht einer besseren Beweisführung, sondern es bedarf überhaupt einer Beweisführung.

> (da man es sieht)

Wenn Du es siehst, mußt Du das, was Du siehst, durch eine Beweisführung, bauend auf Sätze und Defs der Vorlesung verifizieren.
Manchmal schielt man ja auch.


Schau mal:

f: [mm] \IR^3\to \IR^2 [/mm]

[mm] \vektor{x \\ y\\z} \mapsto \vektor{x \\ y} [/mm]


[mm] g:\IR^2\to \IR^3 [/mm]

[mm] \vektor{x \\ y} \mapsto \vektor{x \\ y\\0} [/mm]


Schau Dir die Verkettungen  f [mm]\circ[/mm] g [mm]\circ[/mm] f  und g [mm]\circ[/mm] f [mm]\circ[/mm] g  an.
f und g sind sicher keine Isomorphismen.

Gruß v. Angela







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]