www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - irreduzible Polynome
irreduzible Polynome < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Di 03.07.2007
Autor: Caroline

Hallo Leute,

ich komm mal wieder nicht weiter :-(

Könnt ihr mir bei folgender Aufgabe helfen?

K ist endlicher Körper. Beweise, dass K[X] unhendlich viele normierte irreduzible Polynome enthält (auch solche von beliebig hohem Grad)!!!

Bitte bitte bitte, brauche unbedingt eine möglichen Weg für diese Aufgabe

grüße

caro

        
Bezug
irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Di 03.07.2007
Autor: burnside

versuch mal den beweis, dass es unendlich viele primzahlen gibt (den beweis von euklid) auf deine situation zu übertragen. hab jetzt leider keine zeit mehr das auszuführen

Bezug
                
Bezug
irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 Di 03.07.2007
Autor: Caroline

Leider verstehe ich nicht wodrauf du hinaus willst. Es ist ja hier schließlich dir Rede von Polynomen und nicht von "Zahlen"...

Ich hab immer noch keinen blassen Schimmer wie ich an diese Aufgabe drangehen soll...

Aber trotzdem Danke (auch wenn ich daraus nicht schlau werde, was ja an mir liegt ;-) )

Caro

Bezug
                        
Bezug
irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Di 03.07.2007
Autor: Regina256

ich glaube, die erste Antwort dachte an so was: Anegenommen es gibt keine irreduziblen Polynome, dann müsste eigentlich jedes Polynom ein Produkt aus Linearfaktoren sein! Es gibt in einem endlichen Körper aber nur endlich viele Linearfaktoren, man nehme deren Produkt und addiere 1, dann erhält man ein Polynom, das sicher nicht durch einen der Linearfaktoren ist, Widerspruch!

Bezug
                                
Bezug
irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:18 Mi 04.07.2007
Autor: Caroline

mmmh ok, den ansatz habe ich glaube ich nun verstanden, aber hilft mir das wirklich bei dieser aufgabe? weil damit beweise ich ja nur, dass es mind. 1 solches irreduzibles Polynom gibt, aber ich sollte ja eigentlich beweisen, dass es unendlich viele und dann auch noch mit beliebig hohem grad gibt...

grüße

caro

Bezug
                                        
Bezug
irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Mi 04.07.2007
Autor: wauwau

angenommen es gibt nur endlich viele, dann das produkt dieser endlichen irreduziblen polynom nehmen und 1 addieren dann ist das sicher auch irreduzibel...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]