irreduzible Polynome < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:53 Sa 18.02.2006 | Autor: | cycilia |
Aufgabe | Zeige, dass das Polynom f = [mm] X^4-2X³+X+2 [/mm] irreduzibel über F5 ist. ist f über dem Körper der rationalen Zahlen irreduzibel? |
Beim Lernen für meine Abschlussprüfung in Algebra ist mir diese Aufgabe aufgefallen. Hierzu kenne ich Eisenstein (kann ich aber in dem Fall auf keinen Fall direkt anwenden) und das Reduktionskriterium. Letzeren kenne ich als Anwendung nur in der Form, dass ich Polöynome aus Q[x] modulo primzahl rechnen kann. Wenn ich dann zeigen kann, dass das dann erhaltene Polynom irreduzibel in Fp ist, dann ist es es auch in Q. Auf das obige Problem bezogen klappt das aber für den zweiten Aufgabenteil nicht, da [mm] x^4+X [/mm] reduzibel in F2 ist und die Umkehrung des Kriteriums nicht gilt. Eine Zerlegung bestimmen kann ich auch nicht, daher meine Frage, wie gehe ich das Problem an? Kann mir da jemand helfen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo,
was genau ist denn F5? Ich kann dir aber für den zweiten Teil sagen, dass es irreduzibel ist. Reduzieren mod(2). Dann ist
[mm] x^{4}+x [/mm] zu betrachten. Mögliche Zerlegungen sind quadratisches polynom mal quadratisches Polynom oder kubisches Polynom mal lineares Polynom. Alle dafür in Frage kommenden Polynome sind: x, x+1, [mm] x^{2}+x+1. [/mm] Führe die Division mod(2) durch und du siehst sofort die Irreduzibilität in [mm] \IZ_{2}. [/mm] Dann weißt du, dass irr. in [mm] \IZ [/mm] ist und damit dann auch in [mm] \IQ.
[/mm]
Viele Grüße
Daniel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:11 So 19.02.2006 | Autor: | cycilia |
Danke,
nach einigem gestrigen probieren bin ich dank er Hilfe dann auch wirklich dazu gelangt, dass es in den rationalen Zahlen irreduzibel ist.
F5 ist der Primkörper mit 5 Elementen. In dem Buch Michael Artin "Algebra" steht ein Verfahren drin, mit dem man alle irreduziblen Polynome bis zu einem bestimten Grad in einem Primkörper bestimmen kann. Allerdings ist das ein recht langwieriges Verfahren - da ist gegebenes Polynom dann bei. Allerdings kann ich mir nicht vorstellen, dass das der Sinn der "Klausuraufgabe" war. Hat jemand dazu noch eine andere Idee?
|
|
|
|