www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - irreduzible Polynome
irreduzible Polynome < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzible Polynome: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:53 Sa 18.02.2006
Autor: cycilia

Aufgabe
Zeige, dass das Polynom f = [mm] X^4-2X³+X+2 [/mm] irreduzibel über F5 ist. ist f über dem Körper der rationalen Zahlen irreduzibel?

Beim Lernen für meine Abschlussprüfung in Algebra ist mir diese Aufgabe aufgefallen. Hierzu kenne ich Eisenstein (kann ich aber in dem Fall auf keinen Fall direkt anwenden) und das Reduktionskriterium. Letzeren kenne ich als Anwendung nur in der Form, dass ich Polöynome aus Q[x] modulo primzahl rechnen kann. Wenn ich dann zeigen kann, dass das dann erhaltene Polynom irreduzibel in Fp ist, dann ist es es auch in Q. Auf das obige Problem bezogen klappt das aber für  den zweiten Aufgabenteil nicht, da [mm] x^4+X [/mm] reduzibel in F2 ist und die Umkehrung des Kriteriums nicht gilt. Eine Zerlegung bestimmen kann ich auch nicht, daher meine Frage, wie gehe ich das Problem an? Kann mir da jemand helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Sa 18.02.2006
Autor: mathmetzsch

Hallo,

was genau ist denn F5? Ich kann dir aber für den zweiten Teil sagen, dass es irreduzibel ist. Reduzieren mod(2). Dann ist

[mm] x^{4}+x [/mm] zu betrachten. Mögliche Zerlegungen sind quadratisches polynom mal quadratisches Polynom oder kubisches Polynom mal lineares Polynom. Alle dafür in Frage kommenden Polynome sind: x, x+1, [mm] x^{2}+x+1. [/mm] Führe die Division mod(2) durch und du siehst sofort die Irreduzibilität in [mm] \IZ_{2}. [/mm] Dann weißt du, dass irr. in [mm] \IZ [/mm] ist und damit dann auch in [mm] \IQ. [/mm]

Viele Grüße
Daniel

Bezug
                
Bezug
irreduzible Polynome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 So 19.02.2006
Autor: cycilia

Danke,

nach einigem gestrigen probieren bin ich dank er Hilfe dann auch wirklich dazu gelangt, dass es in den rationalen Zahlen irreduzibel ist.
F5 ist der Primkörper mit 5 Elementen. In dem Buch Michael Artin "Algebra" steht ein Verfahren drin, mit dem man alle irreduziblen Polynome bis zu einem bestimten Grad in einem Primkörper bestimmen kann. Allerdings ist das ein recht langwieriges Verfahren - da ist gegebenes Polynom dann bei. Allerdings kann ich mir nicht vorstellen, dass das der Sinn der "Klausuraufgabe" war. Hat jemand dazu noch eine andere Idee?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]