www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - integrieren
integrieren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Do 13.08.2009
Autor: hamma

berechnung eines integrals.

[mm] \integral_{a}^{b}{\bruch{4x-2}{x^2-2x+5}dx} [/mm]

ich habe schon versucht den nenner zu substituieren...leider führt das zu keiner lösung. könntet ihr mir bitte einen ansatz geben.

        
Bezug
integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Do 13.08.2009
Autor: schachuzipus

Hallo Markus,

> berechnung eines integrals.
>  
> [mm]\integral_{a}^{b}{\bruch{4x-2}{x^2-2x+5}dx}[/mm]
>  
> ich habe schon versucht den nenner zu
> substituieren...leider führt das zu keiner lösung.
> könntet ihr mir bitte einen ansatz geben.

Forme das Integral zunächst etwas um:

[mm] $\int{\frac{4x-2}{x^2-2x+5} \ dx}=2\cdot{}\int{\frac{2x-1}{x^2-2x+5} \ dx}=2\cdot{}\int{\frac{2x-1\red{-1+1}}{x^2-2x+5} \ dx}=2\cdot{}\int{\frac{2x-2}{x^2-2x+5} \ dx}+2\cdot{}\int{\frac{1}{x^2-2x+5} \ dx}$ [/mm]

Das erste Integral ist nun ein logarithmisches Integral, also eines der Bauart [mm] $\int{\frac{f'(x)}{f(x)} \ dx}$, [/mm] das bekanntermaßen als Stammfunktion [mm] $\ln(|f(x)|)+C$ [/mm] hat. Falls es dir nicht bekannt ist, leite es dir her, indem du den Nenner substituierst, also [mm] $u(x)=x^2-2x+5$ [/mm] ...

Bleibt das hintere Integral [mm] $2\cdot{}\int{\frac{1}{x^2-2x+5} \ dx}$ [/mm]

Quadr. Ergänzung: [mm] $=2\cdot{}\int{\frac{1}{(x-1)^2+2^2} \ dx}=\frac{1}{2}\cdot{}\int{\frac{1}{\left(\frac{x-1}{2}\right)^2+1} \ dx}$ [/mm]

Nun kennst du sicher das Integral [mm] $\int{\frac{1}{z^2+1} \ dz}$ [/mm]

Damit sollte dir eine passende Substitution einfallen ...

LG

schachuzipus


Bezug
                
Bezug
integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:56 Do 13.08.2009
Autor: hamma

vielen dank für deine mühe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]