www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - integriere 1/(x*(b-x))
integriere 1/(x*(b-x)) < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integriere 1/(x*(b-x)): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Mi 11.08.2004
Autor: psjan

Hallo alle!
Hier ein Integral, das eigentlich sehr einfach sein sollte und mich doch etwas verwirrt (Ich muss dazu sagen, dass mein Integral-Rechnen wohl etwas eingerostet ist und dieses Posting hoffentlich nicht eigentlich in die Oberstufen-Mathe gehört (?!)). Also, ich habe Folgendes im Walter gewöhnl. DGL, Kap. 1, §1, XIV gelesen:

[mm] (\beta [/mm] -1) [mm] \integral_{1}^{u} \bruch{ds}{s(\beta -s)} [/mm] =  [mm] \bruch{\beta -1}{\beta} [/mm] log  [mm] \bruch{(\beta -1)u}{\beta -u} [/mm]

Wie kommen die da drauf? Mein erster Verdacht wäre Integrieren einer rationalen Funktion [mm] 1/(x^2+bx+c) [/mm] gewesen, aber da kommt ein arctan ins Spiel und kein log.

Vielen Dank schon mal im Voraus...
psjan


Das ist mein erstes Posting und daher:
Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
integriere 1/(x*(b-x)): Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Mi 11.08.2004
Autor: felixs

hab mal ne idee:

[mm] $(\beta [/mm] -1)  [mm] \integral_{1}^{u} \bruch{ds}{s(\beta -s)} [/mm] $
$= [mm] \frac{\beta-1}{\beta} \integral_{1}^{u} \bruch{\beta}{s(\beta -s)} [/mm] ds $
partialbruchzuzerlegen...
$= [mm] \frac{\beta-1}{\beta} \integral_{1}^{u} [/mm] ( [mm] \bruch{A}{s}+\frac{B}{\beta -s} [/mm] ) ds$
gibt dann (ich lass mal die rechnung weg)
[mm] $=\frac{\beta-1}{\beta}\integral_{1}^{u} \bruch{1}{s}+\frac{1}{\beta -s} [/mm] ds $
kann man logarithmisch integrieren:
[mm] $=\frac{\beta-1}{\beta} \left [ ln s - ln (\beta -s) \right ]_{s=1}^{s=u} [/mm] $
also
[mm] $=\frac{\beta-1}{\beta} \left ( ln u - ln (\beta -u) - ln 1 + ln (\beta -1) \right [/mm] ) $
oder
[mm] $=\frac{\beta-1}{\beta} [/mm]  ln [mm] \frac{(\beta -1)u}{\beta-u} [/mm]  $

... glaube das passt so

Bezug
                
Bezug
integriere 1/(x*(b-x)): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:13 Do 12.08.2004
Autor: psjan

Hallo felixs,
danke für die schnelle und klare Lösung!

CU
psjan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]