www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - integriebar
integriebar < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integriebar: Frage
Status: (Frage) beantwortet Status 
Datum: 19:58 Di 23.11.2004
Autor: liuhuanan21

Hallo!
Sei f ist [mm] \mu1 [/mm] integrierbar Funktion,Zeigen sie ,dass die Funktion F: [mm] \IR\to\IR, [/mm]
[mm] x\mapsto [/mm] F(x) : = [mm] \integral_{0}^{x} {fd\mu1} [/mm] gleichmäßig stetig ist .



wie kann man machen?Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Danke sehr!
Huanan

        
Bezug
integriebar: Hinweise!
Status: (Antwort) fertig Status 
Datum: 00:59 Mi 24.11.2004
Autor: Micha

Hallo!

Da ich die Aufgabe zufällig kenne hier ein paar Hinweise:
- die Aufgabe hat was mit Aufgabe 1 der Übungsaufgaben zu tun
- Mache dir die definition der gleichmäßigen Stetigkeit klar:

[mm] $\forall \varepsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0 [mm] \forall [/mm] x,y [mm] \in \IR [/mm] : |x-y| < [mm] \delta \Rightarrow [/mm] |F(x) - F(y)| [mm] <\varepsilon$ [/mm]

Dein F ist der Integraloperator...

> Hallo!
>  Sei f ist [mm]\mu1[/mm] integrierbar Funktion,Zeigen sie ,dass die
> Funktion F: [mm]\IR\to\IR, [/mm]
>  [mm]x\mapsto[/mm] F(x) : = [mm]\integral_{0}^{x} {fd\mu1}[/mm] gleichmäßig
> stetig ist .


Kannst du es nun allein zusammensetzen?

Gruß Micha ;-)

Bezug
                
Bezug
integriebar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:17 Mi 24.11.2004
Autor: liuhuanan21

Hallo Micha ,
Danke ,ich probiere mal.> Hallo!

>  
> Da ich die Aufgabe zufällig kenne hier ein paar Hinweise:
>  - die Aufgabe hat was mit Aufgabe 1 der Übungsaufgaben zu
> tun
>  - Mache dir die definition der gleichmäßigen Stetigkeit
> klar:
>  
> [mm]\forall \varepsilon > 0 \exists \delta > 0 \forall x,y \in \IR : |x-y| < \delta \Rightarrow |F(x) - F(y)| <\varepsilon[/mm]
>  
>
> Dein F ist der Integraloperator...
>  
> > Hallo!
>  >  Sei f ist [mm]\mu1[/mm] integrierbar Funktion,Zeigen sie ,dass
> die
> > Funktion F: [mm]\IR\to\IR, [/mm]
>  >  [mm]x\mapsto[/mm] F(x) : = [mm]\integral_{0}^{x} {fd\mu1}[/mm]
> gleichmäßig
> > stetig ist .
>  
>
> Kannst du es nun allein zusammensetzen?
>  
> Gruß Micha ;-)
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]