www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - integration normalbereich
integration normalbereich < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integration normalbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 So 04.07.2010
Autor: csak1162

Aufgabe
Es sei D der Bereich [mm] \{(x,y): -\sqrt{R^{2} - x^{2}} \le y \le \sqrt{R^{2} - x^{2}}\}, [/mm] R > 0, und f(x,y) = xy. Berechnen Sie
[mm] \integral_{}^{}{}\integral_{D}^{}{xy d(x,y)} [/mm]
indem sie D als NOrmalbereich vom Typ 1 darstellen

okay stimmt da jetzt

[mm] \integral_{-R}^{R}{}\integral_{ -\sqrt{R^{2} - x^{2}}}^{ \sqrt{R^{2} - x^{2}}}{xy dy dx} [/mm]


oder muss das erste integral von 0 bis R gehen?

und irgendwie kommt bei mir bei dem integral 0 raus??

also wenn ich dann [mm] xy^{2}/2 [/mm] dann ober und untere granze einsetzt fällt das ja weg???

oder steh ich gerade vollkommen auf der leitung???


danke lg



        
Bezug
integration normalbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 So 04.07.2010
Autor: MathePower

Hallo csak1162,

> Es sei D der Bereich [mm]\{(x,y): -\sqrt{R^{2} - x^{2}} \le y \le \sqrt{R^{2} - x^{2}}\},[/mm]
> R > 0, und f(x,y) = xy. Berechnen Sie
>  [mm]\integral_{}^{}{}\integral_{D}^{}{xy d(x,y)}[/mm]
>  indem sie D
> als NOrmalbereich vom Typ 1 darstellen
>  okay stimmt da jetzt
>  
> [mm]\integral_{-R}^{R}{}\integral_{ -\sqrt{R^{2} - x^{2}}}^{ \sqrt{R^{2} - x^{2}}}{xy dy dx}[/mm]
>  
>
> oder muss das erste integral von 0 bis R gehen?


Über den Bereich von x ist hier nichts gesagt.


>  
> und irgendwie kommt bei mir bei dem integral 0 raus??


Ja.


>  
> also wenn ich dann [mm]xy^{2}/2[/mm] dann ober und untere granze
> einsetzt fällt das ja weg???


Das ist richtig.


>  
> oder steh ich gerade vollkommen auf der leitung???
>  
>
> danke lg
>  
>  


Gruss
MathePower

Bezug
                
Bezug
integration normalbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 So 04.07.2010
Autor: csak1162

aber irgendwas muss ich für x doch einsetzen, oder??

Bezug
                        
Bezug
integration normalbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 So 04.07.2010
Autor: MathePower

Hallo csak1182,

> aber irgendwas muss ich für x doch einsetzen, oder??


Das ist richtig.

Wenn Du, wie hier, zuerst nach y integrierst und dann
die Grenzen für y einsetzt, ergibt sich für den Integranden [mm]x*0=0[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]