www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - integration
integration < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 Fr 16.10.2009
Autor: vivo

Hallo,

ich würde gerne den wert des integrals:

[mm]w= \bruch{1}{\wurzel{2\pi}}\int_{-\infty}^{y} x e^{-\bruch{x^2}{2}}[/mm]

um anschließend den

[mm]CVar=\bruch{w}{\alpha}[/mm]

zu bestimmen. In sämtlicher Literatur findet man zwar das Ergebnis für den conditional CVar (bei Normalverteilung) aber keine herleitung des wertes des oberen integrals.

vielen dank für eure hilfe

        
Bezug
integration: Einfach integrieren
Status: (Antwort) fertig Status 
Datum: 17:53 Fr 16.10.2009
Autor: Disap

Hallo vivo!

> ich würde gerne den wert des integrals:
>  
> [mm]w= \bruch{1}{\wurzel{2\pi}}\int_{-\infty}^{y} x e^{-\bruch{x^2}{2}}[/mm]
> um anschließend den
>  
> [mm]CVar=\bruch{w}{\alpha}[/mm]
>  
> zu bestimmen. In sämtlicher Literatur findet man zwar das
> Ergebnis für den conditional CVar (bei Normalverteilung)
> aber keine herleitung des wertes des oberen integrals.

Du willst das obige Integral berechnen? Nach dx?
Womit? Entweder du benutzt partielle Integration oder du benutzt Integration durch Substitution.
Setze z. B. z:= [mm] x^2 [/mm]

"In sämtlicher Literatur": Im Bronstein steht das Integral bestimmt drin. Zudem ist es auch nicht so schwer, es selbst zu berechnen. Hast du die Aufgabe auch richtig abgeschrieben?

Bei Schwierigkeiten frag einfach noch mal.

MfG
Disap

Bezug
        
Bezug
integration: Lösung mit Substitution
Status: (Antwort) fertig Status 
Datum: 18:04 Fr 16.10.2009
Autor: Disap


> [mm]w= \bruch{1}{\wurzel{2\pi}}\int_{-\infty}^{y} x e^{-\bruch{x^2}{2}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



$\int^y_{-\infty} x*e^{-0.5x^2} dx$

Setze $z:= x^2$ => $z' = 2x$
=> $dz = dx/ z' = dx/(2x)$

=>
$\int^y_{-\infty} x*e^{-0.5x^2} dx$

Grenzen lasse ich jetzt mal bewusst weg

$ =\int  x*e^{-0.5z} \frac{dz}{2x} = 0.5 * \int e^{-0.5z}dz$

$= 0.5*\frac{1}{-0.5}e^{-0.5z} = - e^{-0.5z} $

Rücksubstitution

$=-e^{-0.5x^2}$

Die ursprünglichen Grenzen waren y und -\infty

=>$[-e^{-0.5x^2}]^y_{-\infty} = - e^{-0.5*y^2)$

Weil $e^{-0.5*(-\infty)^2} = e^{-0.5*(+\infty)} = e^{-\infty} = 0$

Als Mathematiker darf man das so nicht schreiben, aber da jeder weiß, wie es gemeint ist, ist es so auch okay :)

Und dann gabs noch einen Vorfaktor vor dem Integral,...

Disap



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]