injektive Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei M eine Menge. Dann sind die folgenden Aussagen äquivalent:
(1) M ist nicht endlich.
(2) es gibt ein y [mm] \in [/mm] M und eine injektive Abbildung f: M [mm] \to [/mm] M mit f(x) [mm] \not= [/mm] y, für alle x [mm] \in [/mm] M. |
Hallo,
soweit ich das verstehe, bedeutet (2), dass f nicht surjektiv ist. Und ich verstehe auch, wie ich von (2) auf (1) schließen kann. Aber ich komme bei der "Hin-Richtung" nicht weiter.
Kann mir bitte jemand helfen, wie ich von (1) auf (2) schließen kann?
Vielen Dank!
PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:00 Do 07.05.2009 | Autor: | Marcel |
Hallo,
> Sei M eine Menge. Dann sind die folgenden Aussagen
> äquivalent:
>
> (1) M ist nicht endlich.
> (2) es gibt ein y [mm]\in[/mm] M und eine injektive Abbildung f: M
> [mm]\to[/mm] M mit f(x) [mm]\not=[/mm] y, für alle x [mm]\in[/mm] M.
> Hallo,
>
> soweit ich das verstehe, bedeutet (2), dass f nicht
> surjektiv ist. Und ich verstehe auch, wie ich von (2) auf
> (1) schließen kann. Aber ich komme bei der "Hin-Richtung"
> nicht weiter.
> Kann mir bitte jemand helfen, wie ich von (1) auf (2)
> schließen kann?
probiere es mit einem Beweis durch Kontraposition. Wenn (2) nicht gilt, dann heißt das:
Für jedes $y [mm] \in [/mm] M$ gilt: Ist $f: M [mm] \to [/mm] M$ eine Injektion, so gibt es ein [mm] $x_0 \in [/mm] M$ mit [mm] $f(x_0)=y\,.$ [/mm] Eine jede Injektion $f: M [mm] \to [/mm] M$ ist also auch surjektiv und damit bijektiv. Jetzt wäre also nur noch zu begründen, dass dies' die Endlichkeit von [mm] $M\,$ [/mm] impliziert.
Je nach Definition des Begriffes der Endlichkeit einer Menge kann es nun so sein, dass das bei Euch per Definitionem so ist (per Definitionem hieße dann [mm] $M\,$ [/mm] genau dann endlich, wenn jede Injektion $f: M [mm] \to [/mm] M$ schon surjektiv ist).
Es gibt aber durchaus auch den Satz, dass eine Menge genau dann endlich ist, wenn jede Injektion $f: M [mm] \to [/mm] M$ schon surjektiv ist. Dann wäre vermutlich definiert:
[mm] $(\star)$ $M\,$ [/mm] heißt endlich, wenn es eine Zahl $N [mm] \in \IN$ [/mm] gibt, so dass eine Injektion $f: M [mm] \to \{1,\,\ldots,\,N\}$ [/mm] existiert. Ist dann $n [mm] \in \IN$ [/mm] die kleinste Zahl, so dass eine Injektion $f: M [mm] \to \{1,\,\ldots,\,n\}$ [/mm] existiert, so heißt [mm] $\,|M|:=n$ [/mm] die Anzahl der Elemente von [mm] $\,M\,.$
[/mm]
Falls ihr den Begriff der Endlichkeit einer Menge nicht wie in dem blauen Satz oben definiert habt, hast Du also noch was zu tun. Andernfalls bist Du fertig.
(Dann hättest Du gezeigt: Wenn (2) nicht gilt, dann gilt (1) nicht. Wegen Kontraposition ist [mm] '$(\neg [/mm] B) [mm] \Rightarrow (\neg [/mm] A)$' äquivalent zu '$A [mm] \Rightarrow [/mm] B$', also wäre damit gezeigt, dass (1) die Aussage (2) impliziert).
Gruß,
Marcel
|
|
|
|