www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - injektive Abbildung
injektive Abbildung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

injektive Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 Di 02.12.2008
Autor: Thomas87

Aufgabe
[Dateianhang nicht öffentlich]

Also vorab, die Aufgabe 4 b) hab ich, ist ja auch nicht so schwer, jedoch tu ich mich sehr schwer an den anderen beiden Teilaufgaben!
Könnt ihr mir helfen?

LG.
Thomas

Dateianhänge:
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
injektive Abbildung: c)
Status: (Antwort) fertig Status 
Datum: 19:40 Di 02.12.2008
Autor: strangelet

Schau nach der Definition der Injektivität, dann schau nach der Definition der Gleichheit von zwei Matrizen.

In der Aufgabe steht, was f(x) ist ([mm]\pmat{ 1 & x \\ 0 & 1 }[/mm]). Dann kommst du bestimmt selbst drauf, was f(y) und f(x+y) ist. Wenn du das hast, dann guck, ob f(x)*f(y) wirklich f(x+y) ist. Du hast gesagt, dass du b) hast, also Matrizen multiplizieren kannst du. Falls du Probleme hast, sag welche,
gruss Strangelet

Bezug
        
Bezug
injektive Abbildung: a)
Status: (Antwort) fertig Status 
Datum: 20:09 Di 02.12.2008
Autor: strangelet

Hier muss man die Definition der Matrixmultiplikation kennen.
Zuerst könnte man prüfen, ob die Grösse beider Matrizen überhaupt die gleiche ist.
Dann, wenn AB=C, der Eintrag in i-ter Reihe und j-ter Spalte der Matrix C ist [mm]c_{ij}=\summe_{k=1}^{n}{a_{ik}*b_{kj}}[/mm]
Dann muss man gucken, was [mm]c_{ij}^T[/mm] also [mm](\summe_{k=1}^{n}{a_{ik}*b_{kj}})^T[/mm] ist, da wird man benutzen, dass [mm](A+B)^T=A^T+B^T[/mm] und dann [mm](x_{ij})^T=x_{ji}[/mm].
Dann benutzt man die Definition der Matrixmultiplikation für die Einträge der Matrix [mm]B^T*A^T[/mm] und guckt, ob das gleiche rauskommt.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]