www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - inhomogenes Gleichungssystem A
inhomogenes Gleichungssystem A < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

inhomogenes Gleichungssystem A: Erklärung
Status: (Frage) überfällig Status 
Datum: 18:59 So 18.01.2009
Autor: seamus321

Aufgabe
Beispielaufgabe:
U ist ein Unterraum von [mm] K^{n} [/mm] und [mm] a_{0} [/mm] Element [mm] K^{n} [/mm]
[mm] a_{0} =\pmat{1\\2\\0\\1} [/mm]

U=Lin( [mm] \pmat{1\\1\\-1\\0},\pmat{1\\2\\2\\1} [/mm] )
und die Lösung sei in der Form [mm] a_{0} [/mm] + U

Zeigen Sie: es gibt ein lineares Gleichungssystem mit n Unbekannten, dessen Lösungsmenge mit      [mm] a_{0} [/mm] + U übereinstimmt.

Bestimmen Sie ein solchen Gleichungssystem für n=4 und [mm] K=\IR [/mm]

Kann mir bitte jemand erklären wie ich auf ein Gleichungssystem komme wenn ich eine partikuläre Lösung eines Systems und den Kern gegeben hab.

Also ich weis das U der Kern von [mm] h_{A} [/mm] sein muss.

wär nett wenn mir das jemand allgemein bzw an Hand des Beispieles erklären könnte.

lg Seamus

Ich habe diese Frage in keinen anderen Forum gestellt.

        
Bezug
inhomogenes Gleichungssystem A: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:07 Mo 19.01.2009
Autor: seamus321

Kann ich vielleicht irgendwie ( wie weis ich leider auch nicht) die Basis von U also [mm] \pmat{1\\1\\-1\\0},\pmat{1\\2\\2\\1} [/mm] mit den kanonischen basen zu [mm] K^{n} [/mm] erweitern so das ich [mm] h_{A} [/mm] bzgl der beiden Basen bestimmen kann da [mm] h_{A}: K^{n} \mapsto K^{n} [/mm]
Außerdem weis ich ja das [mm] h_{A}( \pmat{1\\1\\-1\\0} [/mm] ) = 0 und [mm] h_{A}(\pmat{1\\2\\2\\1}) [/mm] = 0 is da diese ja der kern sind oder sehe ich das falsch?

naja, ich weis jedoch nicht wie ich das nun mathematisch umsetzen kann.
ich hoffe das mir noch jemand weiter helfen kann!

mfg Seamus

Bezug
                
Bezug
inhomogenes Gleichungssystem A: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 21.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
inhomogenes Gleichungssystem A: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 20.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]