implizite Funktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo ich habe eine implizite Funktion [mm] F(U_e,U_a)=0, [/mm] wobei [mm] U_a=f(U_e) [/mm] gilt. Ich finde alles bis zur 2. Ableitung mit $ [mm] -\frac{F_{U_eU_e}F_{I_a}^2-2F_{U_e}F_{I_a}F_{U_eI_a}+F_{I_aI_a}F_{U_e}^2}{F_{I_a}^3}$
[/mm]
Leider ist in der Formelsammlung nicht mehr angeben, jedoch brauche ich die dritte Ableitung noch. Kann die mir jemand aufschreiben ? Danke für die Hilfe.
|
|
|
|
Hallo CingChris,
> Hallo ich habe eine implizite Funktion [mm]F(U_e,U_a)=0,[/mm] wobei
> [mm]U_a=f(U_e)[/mm] gilt. Ich finde alles bis zur 2. Ableitung mit
> [mm]-\frac{F_{U_eU_e}F_{I_a}^2-2F_{U_e}F_{I_a}F_{U_eI_a}+F_{I_aI_a}F_{U_e}^2}{F_{I_a}^3}[/mm]
>
> Leider ist in der Formelsammlung nicht mehr angeben, jedoch
> brauche ich die dritte Ableitung noch. Kann die mir jemand
> aufschreiben ? Danke für die Hilfe.
Die 3. Ableitung bekommst Du genauso,
wie Du die 2. Ableitung bekommen hast.
Beim differenzieren musst Du hier wiederum die Kettenregel anwenden.
Gruss
MathePower
|
|
|
|
|
Ich habe die Ableitung nicht hergeleitet, sondern aus einer Formelsammlung. Ich hab die Ableitung zwar versucht bin aber schon an der zweiten Ableitung gescheitert. Gibts die nicht vlt auch in einer bestimmten Formelsammlung ?
|
|
|
|
|
Hallo CingChris,
> Ich habe die Ableitung nicht hergeleitet, sondern aus einer
> Formelsammlung. Ich hab die Ableitung zwar versucht bin
> aber schon an der zweiten Ableitung gescheitert. Gibts die
> nicht vlt auch in einer bestimmten Formelsammlung ?
Mir ist keine derartige Formelsammlung bekannt,
in der sowas drinsteht.
Der Einfachheit halber gehw ich von [mm]F\left( \ x,y\left(x\righjt) \ \right)=0[/mm] aus.
Das ergibt nach verallgemeinerten Kettenregel:
[mm]F_{x}\left( \ x,y\left(x\righjt) \ \right)+F_{y}\left( \ x,y\left(x\righjt) \ \right)*y\left(x\right)=0[/mm]
Das wiederum nach x abgeleitet ergibt:
[mm]\bruch{d}{dx}\left( \ F_{x}\left( \ x,y\left(x\righjt) \ \right)+F_{y}\left( \ x,y\left(x\righjt) \ \right)*y\left(x\right) \ \right)=0[/mm]
Ausgeschrieben lautet das:
[mm]\bruch{d}{dx}F_{x}\left( \ x,y\left(x\right) \ \right)+\bruch{d}{dx}\left( \ F_{y}\left( \ x,y\left(x\right) \ \right) \ \right)*y'(x)+F_{y}\left( \ x,y\left(x\righjt) \ \right)*y''(x)=0[/mm]
Nun ist für [mm]\bruch{d}{dx}F_{x}\left( \ x,y\left(x\right) \ \right)[/mm] und für [mm]\bruch{d}{dx}F_{y}\left( \ x,y\left(x\right) \ \right)[/mm] wiederum
die verallgemeinerte Kettenregel anzuwenden.
Gruss
MathePower
|
|
|
|