www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - implizite Ableitung
implizite Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

implizite Ableitung: mehrere Variable
Status: (Frage) beantwortet Status 
Datum: 14:56 Fr 23.05.2008
Autor: Matheamateur

Aufgabe
[mm] F=k_1*y+k_2*y^{kexp}+k_3*x_1^2+k_4*x_1+k_5*x_1*x_2+k_6*x_2=0 [/mm]
[mm] f(y)=k_1+k_2*y^{kexp-1} [/mm]
Gesucht ist [mm] df/dx_1 [/mm] und [mm] df/dx_2 [/mm]
[mm] k_1 [/mm] bis [mm] k_6 [/mm] sind Konstanten, kexp ist z.B 0.3

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Diese Frage nach der impliziten Ableitung ergibt sich in meiner Diplomarbeit innerhalb einer Tylorreihenentwicklung bis zur ersten Ableitung, die ich zur Linearisierung einer DGL benutze. Ich bin etwas unschlüssig, wie man so ein Problem richtig lösen kann. Die Lösung von y(x1,x2) berechne ich mit der Regula Falsi Methode, also numerisch. Im Entwicklungspunkt brauche ich jedoch eine explizite Darstellung der Ableitung für die Taylorreihenentwicklung.
Mein Vorgehen:
[mm] df/dx_1=df/dy*dy/dx_1 [/mm]
[mm] df/dy=k_2*(kexp-1)*y^{kexp-2} [/mm]
[mm] dy/dx_1=-F_{x1}/F_y [/mm]
mit [mm] F_{x1}=k_3*2*x_1+k_4+k_5*x_2 [/mm]
und [mm] F_y=k_1+k_2*kexp*y^{kexp-1} [/mm]
Ist das ansatzweise so richtig?
Ergebnis:
[mm] df/dx_1=k_2*(kexp-1)*y^{kexp-2}*(-F_{x1}/F_y) [/mm]
Mein Ergebnis will einfach nicht so richtig Sinn machen.
Ich habe die Regel für implizites Ableiten benutzt:
Bronstein: F(x,y)=0; [mm] y'=-F_x/F_y [/mm]
Wann darf man diese Gleichung anwenden?
Habe zur Probe Gleichungen, die man auch explizit ableiten kann mit dieser Formel getestet. Und falsche Ergebnisse erhalten. u.a. deshalb kommt mir die Lösung mit dem oben beschriebenen Lösungsweg nicht richtig vor.
Vielen Dank für die Hilfe

        
Bezug
implizite Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Fr 23.05.2008
Autor: HJKweseleit


>
> [mm]F=k_1*y+k_2*y^{kexp}+k_3*x_1^2+k_4*x_1+k_5*x_1*x_2+k_6*x_2=0[/mm]
>  [mm]f(y)=k_1+k_2*y^{kexp-1}[/mm]
>  Gesucht ist [mm]df/dx_1[/mm] und [mm]df/dx_2[/mm]
>  [mm]k_1[/mm] bis [mm]k_6[/mm] sind Konstanten, kexp ist z.B 0.3
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Die Frage ist, welche der Variablen [mm] x_1, x_2 [/mm] und y beliebig variierbar sind. F legt eine Nebenbedingung fest, und wenn man z.B. x1 variiert, könnte es sein, dass sich nur y mitverändert, damit F=0 bleibt. Es könnte aber auch sein, dass man [mm] x_2 [/mm] und y ändern kann.

Genau ergibt sich Folgendes:

F ist eine Nebenbedingung, die immer 0 sein soll. Ändert man alle 3 Variablen beliebig um dy bzw. [mm] dx_1 [/mm] bzw. [mm] dx_2, [/mm] so ergibt

[mm]dF=k_1*dy+k_2*kexp*y^{kexp-1}dy+k_3*2*x_1*dx_1+k_4*dx_1+(k_5*dx_1*x_2+k_5*x_1*dx_2)+k_6*dx_2=0[/mm] (geklammert: Anwendung der Produktregel / dF =0, da F=0=konstant bleiben soll und deshalb dF=0 sein muss.

Daraus erhält man
[mm] k_1*dy+k_2*kexp*y^{kexp-1}dy=-(k_3*2*x_1*dx_1+k_4*dx_1+k_5*dx_1*x_2+k_5*x_1*dx_2+k_6*dx_2) [/mm]

[mm] (k_1+k_2*kexp*y^{kexp-1})dy=-(k_3*2*x_1*dx_1+k_4*dx_1+k_5*dx_1*x_2+k_5*x_1*dx_2+k_6*dx_2) [/mm]

[mm] dy=-(k_3*2*x_1*dx_1+k_4*dx_1+k_5*dx_1*x_2+k_5*x_1*dx_2+k_6*dx_2)/(k_1+k_2*kexp*y^{kexp-1}) [/mm]

[mm] dy/dx_1=-(k_3*2*x_1+k_4+k_5*x_2+k_5*x_1*dx_2/dx_1+k_6*dx_2/dx_1)/(k_1+k_2*kexp*y^{kexp-1}) [/mm]

sowie
[mm] dy/dx_2=(k_3*2*x_1*dx_1/dx_2+k_4*dx_1/dx_2+k_5*dx_1/dx_2*x_2+k_5*x_1+k_6)/(k_1+k_2*kexp*y^{kexp-1}) [/mm]

Wenn also [mm] x_1 [/mm] unabhängig von [mm] x_2 [/mm] geändert wird [mm] (x_2 [/mm] bleibt konstant, nur y ändert sich), so ist [mm] dx_2/dx_1=0 [/mm] und entsprechend umgekehrt. Dann gilt die Formel aus dem Bronstein (also nur partielle Ableitungen).

Ändert sich aber mit [mm] x_1 [/mm] auch [mm] x_2 [/mm] und / oder umgekehrt, so sind [mm] dx_1/dx_2 [/mm] bzw. [mm] dx_2/dx_1 [/mm] nicht 0 und verändern das Ergebnis.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]