www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - immer wieder würfeln
immer wieder würfeln < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

immer wieder würfeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:34 So 14.06.2009
Autor: matheja

Moinsen.Häng hier bei einer aufgabe fest.würd mich freuen wenn ihr mir helfen könntet :)

Aufgabe
Spieler A und B würfeln in der Reihenfolge A;B;B; A;
B; A;B; A;B; A;B; A;... solange, bis einer der Spieler eine Sechs erhält. Wie groß ist die Wahrscheinlichkeit, daß A gewinnt?

Irgendwie steh ich aufn schlauch :(

Ich hab mir überlegt zunächst einmal den Erwartungswert zu berechenem

der liegt ja bei 3,5....

mir fehlt echt ein ansatz

freu mich auf hilfe :)

        
Bezug
immer wieder würfeln: Baumdiagramm
Status: (Antwort) fertig Status 
Datum: 11:44 So 14.06.2009
Autor: Al-Chwarizmi


> AUFGABE:
> Spieler A und B würfeln in der Reihenfolge A;B;B;A;
> B;A;B; A;B;A;B; A;... solange, bis einer der Spieler
> eine Sechs erhält. Wie groß ist die Wahrscheinlichkeit, daß
> A gewinnt?


Hallo matheja,

ich würde einen Baum zeichnen. Der wird ziemlich
"dünn", denn stets, wenn eine Sechs aufgetreten
ist, muss man diesen Ast ja nicht weiterführen.
Der Baum wird trotzdem unendlich lang, aber ganz
regelmässig. So regelmässig, dass man die unend-
lich vielen Summanden, die zur Wahrscheinlichkeit
P(A gewinnt) beitragen, nach einer einfachen Formel
addieren kann.


LG    Al-Chwarizmi

Bezug
                
Bezug
immer wieder würfeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 So 14.06.2009
Autor: matheja

Aufgabe
Erstma Danke für deine Anregungen.

Ich hab mir jetzt einen baum aufgemahlt, der für Spieler A und B immer dann abbricht wenn eine sechs gwürfelt wird. so ganz schlauch wird ich davon nicht
Anzahl der Ereignisse/ anzahl aller möglichkeiten= p( A gewinnt)




Das problem ist dass der baum so unübersichtlich ist dass ich keine regelmäßigkeit feststellen kann :(



Bezug
                        
Bezug
immer wieder würfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 So 14.06.2009
Autor: ms2008de

Hallo,
schauen wir uns doch mal die einzelnen Fälle an, wann A gewinnt:
A gewinnt nach einem Wurf,  P= [mm] \bruch{1}{6} [/mm]
A gewinnt nach 4 Würfen, P= [mm] (\bruch{5}{6})^{3}*\bruch{1}{6} [/mm]
A gewinnt nach 6 Würfen, P= [mm] (\bruch{5}{6})^{5}*\bruch{1}{6} [/mm]
A gewinnt nach 8 Würfen, P= [mm] (\bruch{5}{6})^{7}*\bruch{1}{6} [/mm]
[mm] \vdots [/mm]
Nun sollte man die Regelmäßigkeit festgestellt haben und alle Einzelwahrscheinlichkeiten aufsummieren, sodass man folgende Formel erhält:
P(A gewinnt)= [mm] \bruch{1}{6} [/mm] + [mm] \bruch{1}{6}*\summe_{i=1}^{\infty}(\bruch{5}{6})^{2i+1}. [/mm]
Das sollte nun kein allzu großes Problem mehr für dich sein daraus die Wahrscheinlichkeit für A gewinnt auszurechnen.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]