www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - homogenes Gleichungssystem
homogenes Gleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

homogenes Gleichungssystem: wie gehts?
Status: (Frage) beantwortet Status 
Datum: 09:33 Do 23.11.2006
Autor: Mankiw

Hallo,
ich soll sein homogenes Gleichungssystem finden, dessen Lösungsmenge U von dem System: [mm] {(1,-2,0,3)^{t},(1,-1,-1,4)^{t},(1,0,-2,5)^{t}} [/mm] erzeugt wird.
Zuerst muss ich das doch mal in Matrixform hinschreiben, oder? [mm] \pmat{ 1 & 1 & 1 \\ -2 & -1 & 0 \\ 0 & -1 & -2 \\ 3 & 4 & 5 } [/mm] und auf der rechten Seite stehen lauer Nullen. Aber dann?
Was heißt denn eigentlich "Lösungsmenge U wird vom System" erzeugt? Sind diese drei Vektoren, nun die Vektoren, die den Raum aufspannen?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
homogenes Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Do 23.11.2006
Autor: angela.h.b.


> Hallo,
>  ich soll sein homogenes Gleichungssystem finden, dessen
> Lösungsmenge U von dem System:
> [mm]{(1,-2,0,3)^{t},(1,-1,-1,4)^{t},(1,0,-2,5)^{t}}[/mm] erzeugt
> wird.

Hallo,

über lege Dir zunächst, was gesucht wird:
ein homogenes LGS in den Variablen x,y,z,t, welches von den [mm] \vektor{x \\ y \\ z \\ t} [/mm] mit folgender Eigenschaft gelöst wird:

[mm] \vektor{x \\ y \\ z \\ t}=a\vektor{1 \\ -2 \\ 0 \\ 3}+b\vektor{1 \\ -1 \\ -1 \\ 4}+c\vektor{1 \\ 0 \\ -2 \\ 5} [/mm]

Das liefert Dir 4 Gleichungen mit 7 Variablen, aus denen Du a,b,c eliminieren kannst.

Oder Du machst es "rein mechanisch":
   a    b    c        x   y   z   t
[mm] \pmat{ 1 & 1 & 1 \\ -2 & -1 & 0 \\ 0 & -1 & -2 \\ 3 & 4 & 5 } \pmat{ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 } [/mm]

Forme das so um, daß Du links Zeilen-Stufen-Form hast.
Aus den Nullzeilen kannst Du das gesuchte GS ablesen.

Gruß v. Angela



> Zuerst muss ich das doch mal in Matrixform hinschreiben,
> oder? [mm]\pmat{ 1 & 1 & 1 \\ -2 & -1 & 0 \\ 0 & -1 & -2 \\ 3 & 4 & 5 }[/mm]
> und auf der rechten Seite stehen lauer Nullen. Aber dann?
>  Was heißt denn eigentlich "Lösungsmenge U wird vom System"
> erzeugt? Sind diese drei Vektoren, nun die Vektoren, die
> den Raum aufspannen?
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]