www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - hessesche normalenform
hessesche normalenform < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

hessesche normalenform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 So 18.03.2007
Autor: alien

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hallo forum menschen!

Es soll die Hessesche Normalenform der Ebene
E: [ [mm] \vec{x} [/mm] - [mm] \vektor{3 \\ 5 \\ -1} [/mm] ] [mm] \* \vektor{2 \\ -1 \\ 2} [/mm] = 0
erstellt werden.
Ausserdem der Abstand des Punktes (2|4|-1) zu der Ebene.

ich bin soweit gekommen, dass n0 = [mm] \bruch{1}{3} \* \vektor{2 \\ -1 \\ 2} [/mm]
sein müsste.

wie komme ich auf d und wie bestimme ich den abstand?

denke schonnmal! lieben gruß

        
Bezug
hessesche normalenform: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 So 18.03.2007
Autor: angela.h.b.


> Es soll die Hessesche Normalenform der Ebene
> E: [ [mm]\vec{x}[/mm] - [mm]\vektor{3 \\ 5 \\ -1}[/mm] ] [mm]\* \vektor{2 \\ -1 \\ 2}[/mm]
> = 0
> erstellt werden.
>  Ausserdem der Abstand des Punktes (2|4|-1) zu der Ebene.
>  
> ich bin soweit gekommen, dass n0 = [mm]\bruch{1}{3} \* \vektor{2 \\ -1 \\ 2}[/mm]

Hallo,

hiermit bist Du der Normalenform schon ein Stück näher gekommen.

Wenn Du nun in

[ [mm] \vec{x}- \vektor{3 \\ 5 \\ -1}]\* \vektor{2 \\ -1 \\ 2}= [/mm] 0

die Klammer ausmultiplizierst und das Ganze mit [mm] \bruch{1}{3} [/mm] malnimmst, hast Du es, also

[mm] \bruch{1}{3}[ \vec{x}- \vektor{3 \\ 5 \\ -1}]\* \vektor{2 \\ -1 \\ 2}=\bruch{1}{3}* [/mm] 0=0

(Dein d ist dann ja [mm] \bruch{1}{3}[\vektor{3 \\ 5 \\ -1}\* \vektor{2 \\ -1 \\ 2}.) [/mm]

Den Abstand des Punktes zur Ebene erhältst Du, wenn Du in die Hessesche Normalenform für [mm] \vec{x} [/mm] den Ortsvektor des Punktes einsetzt. Ist der berechnete Abstand positiv, so liegen er Nullpunkt und der zu betrachtende Punkt auf derselben Seite der Ebene, ist er negativ, liegen sie auf verschiedenen Seiten.

Gruß v. Angela



Bezug
                
Bezug
hessesche normalenform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 So 18.03.2007
Autor: alien

also ist mein d= (6- 5- 2) [mm] \* [/mm] 1/3 = -1 [mm] \* [/mm] 1/3 = -1/3 ?

Bezug
                        
Bezug
hessesche normalenform: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 So 18.03.2007
Autor: angela.h.b.


> also ist mein d= (6- 5- 2) [mm]\*[/mm] 1/3 = -1 [mm]\*[/mm] 1/3 = -1/3 ?

Ja.

Deine HNF

heißt dann

[mm] 0=\bruch{1}{3} \vektor{2 \\ -1 \\ 2}\vec{x}- (-\bruch{1}{3})= \vektor{\bruch{2}{3} \\ -\bruch{1}{3} \\ \bruch{2}{3}}\vec{x}+\bruch{1}{3} [/mm]

Gruß v. Angela

Bezug
                                
Bezug
hessesche normalenform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 So 18.03.2007
Autor: alien

eine frage noch:

dann ist der abstand 4/3 - 4/3 -2/3 = -2/3 ?

oder muss ich noch die 1/3 dazurechnen, also d= - 1/3 ?

dann hätte ich alles verstanden!
dankeschön!!!

Bezug
                                        
Bezug
hessesche normalenform: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 So 18.03.2007
Autor: angela.h.b.

Paß auf:

Deine HNF ist

[mm] \vektor{\bruch{2}{3} \\ -\bruch{1}{3}\\\bruch{2}{3}}\vec{x}+\bruch{1}{3}=0. [/mm]

Alle Vektoren [mm] \vec{x}, [/mm] die diese Gleichung erfüllen, zur Ebene den Abstand 0 haben, liegen in der Ebene.

Wenn Du jetzt den Abstand Deines Punktes von dieser Ebene wissen möchtest, setzt Du ihn in [mm] \vektor{\bruch{2}{3} \\ -\bruch{1}{3}\\\bruch{2}{3}}\vec{x}+\bruch{1}{3} [/mm] ein, rechnest, und als Ergebnis purzelt Dir der Abstand heraus. Da steht dann - sofern es sich nicht um einen Vektor in der Ebenen handelt - nicht "=0", sondern "= etwas anderes".

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]