www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - hessesche form
hessesche form < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

hessesche form: tipp ansatz
Status: (Frage) beantwortet Status 
Datum: 18:23 Mo 28.04.2008
Autor: mef

Aufgabe
gegeben ist die ebene: E: [mm] 3x_{1}+2x_{2}+4x_{3}=12 [/mm]
die spurpunkte [mm] S_{1},S_{2},S{3} [/mm] der ebene E bilden zusammen  mit dem ursprung O die ecken einer pyramide. berechnen sie das volumen dieser pyramide möglichst geschickt.
benötigen sie dazu die hessesche normalform?

hallo zusammen,
also ich habe mir natürlich auch gedanken dazu gemacht.

[mm] \overline{S_{1}S_{2}}, \overline{S_{2}S_{3}} [/mm] u.s.w.
sind gleichlang und müssen sich orthogonal zueinander
verhalten.

aber so kriege ich die spurpunkte natürlich nicht raus
bitte um nen ansatz idee tipp

dank im voraus

        
Bezug
hessesche form: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Mo 28.04.2008
Autor: miniscout


> gegeben ist die ebene: E: [mm]3x_{1}+2x_{2}+4x_{3}=12[/mm]
>  die spurpunkte [mm]S_{1},S_{2},S{3}[/mm] der ebene E bilden
> zusammen  mit dem ursprung O die ecken einer pyramide.
> berechnen sie das volumen dieser pyramide möglichst
> geschickt.

Kennst du die Definition der Spurpunkte? Die drei Spurpunkte im [mm] $\IR^3$ [/mm] haben die Form

[mm] $\vektor{a \\ 0 \\ 0}$, $\vektor{0 \\ b \\ 0}$, $\vektor{0 \\ 0 \\ c}$ [/mm]

Wenn du die Vektoren in deine Ebenengleichung einsetzt, kommst du automatisch auf deine drei Punkte [mm] S_1, S_2 [/mm] und [mm] S_3. [/mm]


>  benötigen sie dazu die hessesche normalform?

Prinzipiell nicht.[kopfkratz3] Der Vektor [mm] $\vektor{a \\ b \\ c}$ [/mm] ist ein Normalenvektor auf die Ebene. [keineahnung]

Gruß miniscout

Bezug
                
Bezug
hessesche form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Mo 28.04.2008
Autor: mef

dann hätte ich noch ne klitze kleine frage undzwar
bezüglich des volumens
formal lautet:
V=1/3 [mm] *a^2*h [/mm]

die höhe kann ich ablesen

a müsste doch eigetlich so zu berechnen sein?:
ist die eine dreickige fläche deshalb grundfläche mal höhe
durch 2 oder??
also ist a= 6*3*1/2
????
und das volumen:
1/3 *(6*3*1/2)*3  =9

Bezug
                        
Bezug
hessesche form: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Mo 28.04.2008
Autor: Al-Chwarizmi


> dann hätte ich noch ne klitze kleine frage undzwar
>  bezüglich des volumens
>  formal lautet:
>  V=1/3 [mm]*a^2*h[/mm]                     ??  [kopfschuettel]
>  
> die höhe kann ich ablesen
>  
> a müsste doch eigetlich so zu berechnen sein?:
>  ist die eine dreickige fläche deshalb grundfläche mal           ¿¿¿
> höhe
>  durch 2 oder??                  [notok]
>  also ist a= 6*3*1/2

   was betrachtest du als Grundfläche, was als Höhe, für was steht a ?
          

>  ????
>  und das volumen:
>  1/3 *(6*3*1/2)*3  =9         [notok]

Man könnte die Pyramide als Pyramide mit dem Grunddreieck  [mm]S_1S_2S_3[/mm]  betrachten. Dann müsste man die Höhe dieser Pyramide (=Abstand der Ebene E von O(0/0/0) ) mit der Hesseschen Form bestimmen.
Dies wäre aber hier viel zu viel Aufwand. Es ist viel einfacher, das Dreieck  [mm]OS_1S_2[/mm]  als Grundfläche und  [mm]OS_3 [/mm]  als Höhe zu nehmen.

Gruß  al-Ch.

Bezug
                                
Bezug
hessesche form: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 Mo 28.04.2008
Autor: mef

ok danke schön
gruß mef

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]