halbseitigen Grenzwerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich soll folgendes beweisen:
Sei [mm] x_0 \in \IR\backslash\{x_0\} [/mm] und f:D [mm] \rightarrow \IR. [/mm] Zeigen Sie, dass [mm] \limes_{x\rightarrow x_0} [/mm] f(x) genau dann in [mm] \IR [/mm] existiert, wenn die halbseitigen Grenzwerte
[mm] \limes_{x\rightarrow x^{+}_{0}} [/mm] f(x)
und
[mm] \limes_{x\rightarrow x^{-}_{0}} [/mm] f(x)
jeweis in [mm] \IR [/mm] existieren und gleich sind.
Hier mein Versuch:
Sei [mm] \lambda [/mm] := [mm] \limes_{x\rightarrow x^{+}_{0}} [/mm] f(x). Da (n. V.) [mm] \lambda [/mm] existiert bedeutet dies, dass [mm] \lambda [/mm] der Grenzwert für die auf D [mm] \cap ]x_0, \infty[ [/mm] = [mm] \{x \in D : x_0 < x < \infty\} [/mm] eingeschränkte Funktion f(x) falls x gegen [mm] x_0 [/mm] geht.
(Ich habe also einfach die Definition des rechtsseitigen Häufungspunktes hingeschrieben).
Das könnte ich nun auch für den linksseitigen Grenzwert machen.
So wie ich das verstehe ist in beiden Fällen [mm] x_0 [/mm] ein Häufungspunkt des jeweils eingeschränkten Definitionsbereichs der eingeschränkten Funktion. Richtig?
Dann könnte man ja für je den links und rechtsseitigen Grenzwert das Cauchykriterium für Funktionen anwenden. Oder?
Hilfe :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:20 Mi 09.01.2008 | Autor: | Marcel |
Hallo,
da steht eine "genau dann, wenn..."-Aussage. Du hast also zwei Sachen zu zeigen:
1. Falls [mm] $lim_{x \to x_0} [/mm] f(x)$ existiert, dann existieren auch [mm] $lim_{x \to x_0^+} [/mm] f(x)$ und [mm] $lim_{x \to x_0^-} [/mm] f(x)$ mit [mm] $lim_{x \to x_0^+} f(x)=lim_{x \to x_0^-} [/mm] f(x)$.
2. Falls sowohl [mm] $lim_{x \to x_0^+} [/mm] f(x)$ als auch [mm] $lim_{x \to x_0^-} [/mm] f(x)$ existieren und zudem [mm] $lim_{x \to x_0^+} f(x)=lim_{x \to x_0^-} [/mm] f(x)$, dann existiert auch [mm] $lim_{x \to x_0} [/mm] f(x)$ (hier könnte man noch dazuschreiben, dass in diesem Falle auch [mm] $lim_{x \to x_0} f(x)=lim_{x \to x_0^+} f(x)=lim_{x \to x_0^-} [/mm] f(x)$ gilt).
1. zu zeigen ist eine Banalität, das kann man z.B. so machen, wie Du es getan hast. Es folgt aber eigentlich sowieso sofort aus der Existenz von [mm] $lim_{x \to x_0} [/mm] f(x)$.
Um 2. zu zeigen, muss man ein (ganz klein wenig) überlegen.
P.S.:
In der Aufgabe steht bestimmt nicht:
"Sei [mm] $x_0 \in \IR \backslash \{x_0\}$", [/mm] sondern eher, dass [mm] $D=\IR \backslash\{x_0\}$ [/mm] sein soll
P.P.S.:
Ja, [mm] $x_0$ [/mm] ist in der Tat ein Häufungspunkt von $D$. Wofür man hier irgendein Cauchykriterium benötigen sollte, weiß ich aber nicht...
Gruß,
Marcel
|
|
|
|
|
Hallo,
danke :)
Hier mein zweiter Versuch (deiner Anleitung entsprechend):
Definitionen:
[mm] \lambda [/mm] := $ [mm] \lim_{x \to x_0} [/mm] f(x) $
[mm] a_{+} [/mm] := $ [mm] \lim_{x \to x_0^+} [/mm] f(x) $
[mm] a_{-} [/mm] := $ [mm] \lim_{x \to x_0^-} [/mm] f(x) $
Zu zeigen:
(i) [mm] \lambda [/mm] existiert [mm] \Rightarrow a_{+} [/mm] und [mm] a_{-} [/mm] existieren und [mm] a_{+} [/mm] = [mm] a_{-}
[/mm]
(ii) [mm] a_{+} [/mm] und [mm] a_{-} [/mm] existieren und [mm] a_{+} [/mm] = [mm] a_{-} \Rightarrow \lambda [/mm] existiert
Beweis:
(i) [mm] \lambda [/mm] existiert [mm] \gdw
[/mm]
[mm] \forall \varepsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0 [mm] \forall [/mm] x [mm] \in D\backslash\{x_0\} [/mm] : [mm] |x-x_0| [/mm] < [mm] \delta \Rightarrow [/mm] |f(x) - [mm] \lambda| [/mm] < [mm] \varepsilon
[/mm]
(Einfach nur Definition des Grenzwertes abgeschrieben)
Da dies für [mm] \forall [/mm] x [mm] \in D\backslash\{x_0\} [/mm] gilt, dann gilt es auch [mm] \forall [/mm] x [mm] \in [/mm] D [mm] \cap ]x_0, \infty[ [/mm] was ja genau der Definition des rechtsseitigen Grenzwertes also [mm] a_{+} [/mm] entspricht.
[mm] \Rightarrow \lambda [/mm] = [mm] a_{+}
[/mm]
Es gilt auch für [mm] \forall [/mm] x [mm] \in [/mm] D [mm] \cap ]-\infty, x_0[, [/mm] was der Definition des linksseitigen Grenzwertes - also [mm] a_{-} [/mm] entspricht.
[mm] \Rightarrow \lambda [/mm] = [mm] a_{-}
[/mm]
Und daraus folgt, dass [mm] \lambda [/mm] = [mm] a_{+} [/mm] = [mm] a_{-}
[/mm]
Nun zu (ii):
[mm] a_{+} [/mm] und [mm] a_{-} [/mm] existieren und [mm] a_{+} [/mm] = [mm] a_{-}
[/mm]
[mm] a_{+} [/mm] existiert [mm] \gdw \forall \varepsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0 [mm] \forall [/mm] x [mm] \in [/mm] D [mm] \cap ]x_0, \infty[ [/mm] : [mm] |x-x_0| [/mm] < [mm] \delta \Rightarrow [/mm] |f(x) - [mm] a_{+}| [/mm] < [mm] \varepsilon
[/mm]
[mm] a_{-} [/mm] existiert [mm] \gdw \forall \varepsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0 [mm] \forall [/mm] x [mm] \in [/mm] D [mm] \cap ]-\infty, x_0[ [/mm] : [mm] |x-x_0| [/mm] < [mm] \delta \Rightarrow [/mm] |f(x) - [mm] a_{-}| [/mm] < [mm] \varepsilon
[/mm]
Da [mm] a_{+} [/mm] = [mm] a_{-} [/mm] := a (n.V) und
(I) |f(x) - [mm] a_{+}| [/mm] = |f(x) - a| < [mm] \varepsilon
[/mm]
(II) |f(x) - [mm] a_{-}| [/mm] = |f(x) - a| < [mm] \varepsilon
[/mm]
und da [mm] \lambda [/mm] das einzige Element ist, welches (I) und (II) erfüllt ist a = [mm] \lambda
[/mm]
Wie falsch ist es?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:34 Mi 09.01.2008 | Autor: | Marcel |
Hallo,
> Hallo,
>
> danke :)
>
> Hier mein zweiter Versuch (deiner Anleitung entsprechend):
>
> Definitionen:
>
> [mm]\lambda[/mm] := [mm]\lim_{x \to x_0} f(x)[/mm]
> [mm]a_{+}[/mm] := [mm]\lim_{x \to x_0^+} f(x)[/mm]
>
> [mm]a_{-}[/mm] := [mm]\lim_{x \to x_0^-} f(x)[/mm]
>
> Zu zeigen:
>
> (i) [mm]\lambda[/mm] existiert [mm]\Rightarrow a_{+}[/mm] und [mm]a_{-}[/mm]
> existieren und [mm]a_{+}[/mm] = [mm]a_{-}[/mm]
> (ii) [mm]a_{+}[/mm] und [mm]a_{-}[/mm] existieren und [mm]a_{+}[/mm] = [mm]a_{-} \Rightarrow \lambda[/mm]
> existiert
>
> Beweis:
>
> (i) [mm]\lambda[/mm] existiert [mm]\gdw[/mm]
> [mm]\forall \varepsilon[/mm] > 0 [mm]\exists \delta[/mm] > 0 [mm]\forall[/mm] x [mm]\in D\backslash\{x_0\}[/mm]
> : [mm]|x-x_0|[/mm] < [mm]\delta \Rightarrow[/mm] |f(x) - [mm]\lambda|[/mm] <
> [mm]\varepsilon[/mm]
>
> (Einfach nur Definition des Grenzwertes abgeschrieben)
>
> Da dies für [mm]\forall[/mm] x [mm]\in D\backslash\{x_0\}[/mm] gilt, dann
> gilt es auch [mm]\forall[/mm] x [mm]\in[/mm] D [mm]\cap ]x_0, \infty[[/mm] was ja
> genau der Definition des rechtsseitigen Grenzwertes also
> [mm]a_{+}[/mm] entspricht.
>
> [mm]\Rightarrow \lambda[/mm] = [mm]a_{+}[/mm]
>
> Es gilt auch für [mm]\forall[/mm] x [mm]\in[/mm] D [mm]\cap ]-\infty, x_0[,[/mm] was
> der Definition des linksseitigen Grenzwertes - also [mm]a_{-}[/mm]
> entspricht.
>
> [mm]\Rightarrow \lambda[/mm] = [mm]a_{-}[/mm]
>
> Und daraus folgt, dass [mm]\lambda[/mm] = [mm]a_{+}[/mm] = [mm]a_{-}[/mm]
Also ich hab' das nur knapp überflogen, aber ich denke, dass da keine Patzer vorhanden sind, sprich: Es korrekt ist.
> Nun zu (ii):
> [mm]a_{+}[/mm] und [mm]a_{-}[/mm] existieren und [mm]a_{+}[/mm] = [mm]a_{-}[/mm]
>
> [mm]a_{+}[/mm] existiert [mm]\gdw \forall \varepsilon[/mm] > 0 [mm]\exists \delta[/mm]
> > 0 [mm]\forall[/mm] x [mm]\in[/mm] D [mm]\cap ]x_0, \infty[[/mm] : [mm]|x-x_0|[/mm] < [mm]\delta \Rightarrow[/mm]
> |f(x) - [mm]a_{+}|[/mm] < [mm]\varepsilon[/mm]
>
> [mm]a_{-}[/mm] existiert [mm]\gdw \forall \varepsilon[/mm] > 0 [mm]\exists \delta[/mm]
> > 0 [mm]\forall[/mm] x [mm]\in[/mm] D [mm]\cap ]-\infty, x_0[[/mm] : [mm]|x-x_0|[/mm] < [mm]\delta \Rightarrow[/mm]
> |f(x) - [mm]a_{-}|[/mm] < [mm]\varepsilon[/mm]
>
> Da [mm]a_{+}[/mm] = [mm]a_{-}[/mm] := a (n.V) und
>
> (I) |f(x) - [mm]a_{+}|[/mm] = |f(x) - a| < [mm]\varepsilon[/mm]
> (II) |f(x) - [mm]a_{-}|[/mm] = |f(x) - a| < [mm]\varepsilon[/mm]
>
> und da [mm]\lambda[/mm] das einzige Element ist, welches (I) und
> (II) erfüllt ist a = [mm]\lambda[/mm]
Edit:
Über den Sinn und die Logik des letzten Satzes solltest Du hier nochmal nachdenken. Wenn [mm] $\lambda$ [/mm] existiert, dann ist [mm] $\lambda$ [/mm] eindeutig. Es wird hier gezeigt, dass mit [mm] $a:=a_{+}$ $(=a_{-})$ [/mm] für alle [mm] $\varepsilon [/mm] > 0$ die Ungleichung [mm] $|f(x)-a|<\varepsilon$ [/mm] für alle $x [mm] \in ]x_0-\delta, x_0+\delta[ \backslash\{x_0\}$ [/mm] mit einem [mm] $\delta=\delta_\varepsilon [/mm] > 0$ erfüllt ist, also ist [mm] $\lambda=a$ $(=a_{+})$.
[/mm]
Du meinst das vielleicht so, drückst es aber sehr merkwürdig und missverständlich aus.
> Wie falsch ist es?
Es ist gar nicht so falsch. Das Problem ist die Angabe des letzten [mm] $\delta$. [/mm] Genauer müsstest Du es so machen:
Zu zeigen ist:
Es gibt ein $a [mm] \in \IR$, [/mm] so dass zu jedem [mm] $\varepsilon [/mm] > 0$ ein [mm] $\delta=\delta_{\varepsilon} [/mm] > 0$ so existiert, dass aus $x [mm] \in ]x_0-\delta, x_0+\delta[\backslash \{x_0\}$ [/mm] schon folgt: $|f(x)-a| < [mm] \varepsilon$.
[/mm]
Nun setze [mm] $a:=a_{+}=a_{-}$ [/mm] und zeige, dass es damit klappt (die letzte Gleichheit gilt nach Voraussetzung, und übrigens wird hier $a$ definiert, daher den Doppelpunkt auf dieser Seite):
Sei also [mm] $\varepsilon [/mm] > 0$. Zu zeigen ist nun:
[mm] $\exists \delta=\delta_\varepsilon [/mm] > 0$, so dass [mm] $\forall [/mm] x [mm] \in ]x_0-\delta, x_0+\delta[ \backslash \{x_0\}$ [/mm] folgt, dass $|f(x)-a| < [mm] \varepsilon$.
[/mm]
Nach Voraussetzung gibt es zu dem [mm] $\varepsilon [/mm] > 0$ ein [mm] $\delta_1:=\delta_\varepsilon^{(1)} [/mm] > 0$, so dass für alle $x [mm] \in ]x_0-\delta_1,x_0[$ [/mm] gilt: [mm] $|f(x)-a|=|f(x)-a_{-}| [/mm] < [mm] \varepsilon$.
[/mm]
Genauso:
Nach Voraussetzung gibt es zu dem [mm] $\varepsilon [/mm] > 0$ ein [mm] $\delta_2:=\delta_\varepsilon^{(2)}>0$, [/mm] so dass für alle $x [mm] \in ]x_0,x_0+\delta_2[$ [/mm] gilt: $|f(x)-a| < [mm] \varepsilon$.
[/mm]
Und nun musst Du nur noch [mm] $\delta:=\delta_\varepsilon:=min \{\delta_1,\delta_2\} [/mm] > 0$ wählen, um ein passendes [mm] $\delta$ [/mm] zu erhalten.
(Ich meine, bei Dir hättest Du "nur", dass
[mm] $|f(x)-a|<\varepsilon$ [/mm] für alle $x [mm] \in ]x_0-\delta_1, x_0+\delta_2[ \backslash \{x_0\}$ [/mm] gilt, Du brauchst aber ein [mm] $\delta [/mm] > 0$ so, dass die Grenzen des Intervalls auf beiden Seiten um [mm] $\delta$ [/mm] von [mm] $x_0$ [/mm] entfernt sind.)
Da [mm] $\varepsilon [/mm] > 0$ beliebig war, kann man also für jedes [mm] $\varepsilon [/mm] > 0$ ein solches [mm] $\delta=\delta_{\varepsilon} [/mm] > 0$ wie verlangt angeben, also existiert [mm] $lim_{x \to x_0} [/mm] f(x)$ (und ist [mm] $=a=a_{-}=a_{+}$).
[/mm]
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:03 Mi 09.01.2008 | Autor: | abi2007LK |
Hey danke.
Freut mich echt, dass es scheinbar garnich soooo falsch war. Morgen schau ich mir das alles nochmal in Ruhe an...
Sowas baut auf :)
|
|
|
|