www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - halbeinfache Algebra
halbeinfache Algebra < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

halbeinfache Algebra: Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 13:34 Fr 17.06.2005
Autor: Nette

Hallo!

Ich hab mal wieder ein Problem mit ner Aufgabe:

A soll eine K-Algebra sein. Und nun soll ich zeigen, dass A genau dann halbeinfach ist, wenn jedes Linksideal von der Form Ae ist mit einem idempotenten e (idempotent heißt, dass [mm] e=e^{2}). [/mm]

Also wenn A halbeinfach ist, dann heißt das ja, A lässt sich wie folgt darstellen:
[mm] A=L_{1} \oplus [/mm] ... [mm] \oplus L_{k} [/mm] wobei die [mm] L_{j} [/mm] minimale Linksideale sind.
Und ich weiß, dass sich die Eins von A eindeutig schreiben lässt als [mm] 1_{A}=e_{1}+...+e_{k} [/mm]

Ich hab noch den Tipp, dass wenn e idempotent ist, dass dann (1-e) ebenfalls idempotent ist,
Das kann man ja leicht beweisen:
[mm] (1-e)(1-e)=1-e-e+e^{2}=1-e-e+e [/mm] (da e idempotent)=1-e
Leider weiß ich nicht, wie ich das hier benützen soll.

Wäre echt dankbar für einen Tipp, ich weiß nämlich einfach nicht, in welche Richtung ich denken soll.

Gruß
Annette

        
Bezug
halbeinfache Algebra: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:11 Mo 20.06.2005
Autor: Stefan

Hallo Nette!

Es tut mir leid, dass dir niemand bei deinem Problem in dem von dir vorgesehenen Fälligkeitszeitraum weiterhelfen konnte. Vielleicht hast du ja beim nächsten Mal wieder mehr Glück. [ok]

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]